Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341115

RESUMEN

Theory identifies factors that can undermine the evolutionary stability of mutualisms. However, theory's relevance to mutualism stability in nature is controversial. Detailed comparative studies of parasitic species that are embedded within otherwise mutualistic taxa (e.g., fig pollinator wasps) can identify factors that potentially promote or undermine mutualism stability. We describe results from behavioral, morphological, phylogenetic, and experimental studies of two functionally distinct, but closely related, Eupristina wasp species associated with the monoecious host fig, Ficus microcarpa, in Yunnan Province, China. One (Eupristina verticillata) is a competent pollinator exhibiting morphologies and behaviors consistent with observed seed production. The other (Eupristina sp.) lacks these traits, and dramatically reduces both female and male reproductive success of its host. Furthermore, observations and experiments indicate that individuals of this parasitic species exhibit greater relative fitness than the pollinators, in both indirect competition (individual wasps in separate fig inflorescences) and direct competition (wasps of both species within the same fig). Moreover, phylogenetic analyses suggest that these two Eupristina species are sister taxa. By the strictest definition, the nonpollinating species represents a "cheater" that has descended from a beneficial pollinating mutualist. In sharp contrast to all 15 existing studies of actively pollinated figs and their wasps, the local F. microcarpa exhibit no evidence for host sanctions that effectively reduce the relative fitness of wasps that do not pollinate. We suggest that the lack of sanctions in the local hosts promotes the loss of specialized morphologies and behaviors crucial for pollination and, thereby, the evolution of cheating.


Asunto(s)
Ficus/parasitología , Interacciones Huésped-Parásitos , Avispas/fisiología , Animales , Conducta Animal , Evolución Biológica , China , Femenino , Ficus/fisiología , Cabeza/anatomía & histología , Oviposición , Filogenia , Polen , Polinización , Estaciones del Año , Semillas/crecimiento & desarrollo , Simbiosis , Avispas/anatomía & histología
2.
Nature ; 543(7644): 229-233, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28225761

RESUMEN

Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.

3.
Med Sci Monit ; 29: e942440, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006202

RESUMEN

BACKGROUND The present study was performed to determine the potential risk factors for postoperative knee stiffness in patients with anteromedial knee osteoarthritis undergoing unicompartmental knee arthroplasty with cemented prostheses. MATERIAL AND METHODS This retrospective cohort study evaluated patients with anteromedial knee osteoarthritis who underwent medial unicompartmental knee arthroplasty at our hospital between May 2017 and May 2020. The patients were divided into 2 groups according to their prognosis: those who experienced knee stiffness after undergoing unicompartmental knee arthroplasty and those who did not. The factors associated with stiffness after UKA were identified using univariate analysis. Frequencies are used to express categorical variables, while mean±SD is used to express continuous variables. The t test and chi-square test were used. A multivariate logistic regression model was built to identify the risk factors for postoperative stiffness. RESULTS We included 590 knees in the study after unicompartmental knee arthroplasty. The overall incidence of postoperative stiffness in unicompartmental knee arthroplasty surgery was 10.17%. In terms of the radiological measurements, varus deformity (70.34% vs 29.66%) and tibial component posterior slope angle (4.8±2.0 vs 4.6±2.0, P<0.001) were significantly differences between the 2 groups. Four independent risk factors for stiffness after unicompartmental knee arthroplasty were identified: age (95% CI, 1.022-1.048), varus deformity (95% CI, 1.186-1.192), tibial component posterior slope angle (95% CI, 0.550-0.870), and preoperative maximum flexion (95% CI, 0.896-0.923). CONCLUSIONS The overall incidence of postoperative knee stiffness in patients with anteromedial knee osteoarthritis undergoing unicompartmental knee arthroplasty with cemented prostheses was 10.17%, which was at a moderate level compared to patients with other diseases undergoing unicompartmental knee arthroplasty. Four independent risk factors were identified: age, varus deformity, preoperative maximum flexion, and tibial component posterior slope angle. Awareness these risk factors might help surgeons prevent the occurrence of postoperative knee stiffness in patients with UKA.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Osteoartritis de la Rodilla , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/complicaciones , Estudios Retrospectivos , Articulación de la Rodilla/cirugía , Estudios de Casos y Controles , Factores de Riesgo , Resultado del Tratamiento
4.
Anal Chem ; 93(2): 752-760, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33296184

RESUMEN

Emerging applications in spectroscopy-related bioanalytics demand for integrated devices with small geometric footprints and fast response times. While hollow core waveguides principally provide such conditions, currently used approaches include limitations such as long diffusion times, limited light-matter interaction, substantial implementation efforts, and difficult waveguide interfacing. Here, we introduce the concept of the optofluidic light cage that allows for fast and reliable integrated spectroscopy using a novel on-chip hollow core waveguide platform. The structure, implemented by 3D nanoprinting, consists of millimeter-long high-aspect-ratio strands surrounding a hollow core and includes the unique feature of open space between the strands, allowing analytes to sidewise enter the core region. Reliable, robust, and long-term stable light transmission via antiresonance guidance was observed while the light cages were immersed in an aqueous environment. The performance of the light cage related to absorption spectroscopy, refractive index sensitivity, and dye diffusion was experimentally determined, matching simulations and thus demonstrating the relevance of this approach with respect to chemistry and bioanalytics. The presented work features the optofluidic light cage as a novel on-chip sensing platform with unique properties, opening new avenues for highly integrated sensing devices with real-time responses. Application of this concept is not only limited to absorption spectroscopy but also includes Raman, photoluminescence, or fluorescence spectroscopy. Furthermore, more sophisticated applications are also conceivable in, e.g., nanoparticle tracking analysis or ultrafast nonlinear frequency conversion.

5.
Electrophoresis ; 42(11): 1247-1254, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33650103

RESUMEN

Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2-35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (-0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20-30 µm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment.


Asunto(s)
Citoplasma , Electroforesis , Puntos Cuánticos , Humanos , Nanopartículas
6.
Phys Chem Chem Phys ; 22(38): 21784-21792, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32966426

RESUMEN

Theoretical prediction and experimental measurements of light attenuation in chemically pure and optically transparent solvents have attracted continuous attention, due in part to their curious nature, and in part to the increasing requirements of solvent-related applications. Yet hitherto, a majority of accurate spectrophotometric measurements of transparent solvents upon visible light radiation often end up using long-path-length cells, usually over dozens of cm, rendering the measure costly and complex; meanwhile, the guidance for choosing the Einstein-Smoluchowski equation or its variants as the best formula to predict the light scattering in solvents has remained elusive. Here we demonstrate a simple, versatile and cost-effective spectrophotometric method, enabling a sensitivity of 10-4 dB cm-1 over a 0.5 cm differential path length based on using standard double-beam spectrophotometer. We prove that this method reduces the path length by a factor of 100 while still making its closest approach to the record-low measurement of solvent extinction. We also validate that all the present equations used for predicting the light scattering in the solvent possess similar capacities, suggesting that the criterion for the choice of the appropriate formula simply depends on the equation's practicability. Following the elucidation of the wavelength range where the light scattering dominates the extinction, we further identify differences between scattering coefficients via the theoretical predictions and experimental measures, exposing the need for an improved theory to account for the solvent scattering phenomenon.

7.
Small ; 15(2): e1803712, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548763

RESUMEN

Responsive nanoprobes play an important role in bioassay and bioimaging, early diagnosis of diseases and treatment monitoring. Herein, a upconversional nanoparticle (UCNP)-based nanoprobe, Ru@UCNPs, for specific sensing and imaging of hypochlorous acid (HOCl) is reported. This Ru@UCNP nanoprobe consists of two functional components,, i.e., NaYF4 :Yb, Tm UCNPs that can convert near infrared light-to-visible light as the energy donor, and a HOCl-responsive ruthenium(II) complex [Ru(bpy)2 (DNCH-bpy)](PF6 )2 (Ru-DNPH) as the energy acceptor and also the upconversion luminescence (UCL) quencher. Within this luminescence resonance energy transfer nanoprobe system, the UCL OFF-ON emission is triggered specifically by HOCl. This triggering reaction enables the detection of HOCl in aqueous solution and biological systems. As an example of applications, the Ru@UCNPs nanoprobe is loaded onto test papers for semiquantitative HOCl detection without any interference from the background fluorescence. The application of Ru@UCNPs for background-free detection and visualization of HOCl in cells and mice is successfully demonstrated. This research has thus shown that Ru@UCNPs is a selective HOCl-responsive nanoprobe, providing a new way to detect HOCl and a new strategy to develop novel nanoprobes for in situ detection of various biomarkers in cells and early disgnosis of animal diseases.


Asunto(s)
Diagnóstico por Imagen/métodos , Ácido Hipocloroso/química , Nanopartículas/química , Animales , Ratones , Ratones Desnudos , Rutenio/química
8.
Opt Express ; 26(9): 12266-12276, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716139

RESUMEN

Novel approaches for digital data storage are imperative, as storage capacities are drastically being outpaced by the exponential growth in data generation. Optical data storage represents the most promising alternative to traditional magnetic and solid-state data storage. In this paper, a novel and energy efficient approach to optical data storage using rare-earth ion doped inorganic insulators is demonstrated. In particular, the nanocrystalline alkaline earth halide BaFCl:Sm is shown to provide great potential for multilevel optical data storage. Proof-of-concept demonstrations reveal for the first time that these phosphors could be used for rewritable, multilevel optical data storage on the physical dimensions of a single nanocrystal. Multilevel information storage is based on the very efficient and reversible conversion of Sm3+ to Sm2+ ions upon exposure to UV-C light. The stored information is then read-out using confocal optics by employing the photoluminescence of the Sm2+ ions in the nanocrystals, with the signal strength depending on the UV-C fluence used during the write step. The latter serves as the mechanism for multilevel data storage in the individual nanocrystals, as demonstrated in this paper. This data storage platform has the potential to be extended to 2D and 3D memory for storage densities that could potentially approach petabyte/cm3 levels.

9.
Nano Lett ; 17(5): 2858-2864, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28437117

RESUMEN

Each single upconversion nanocrystal (UCNC) usually contains thousands of photon sensitizers and hundreds of photon activators to up-convert near-infrared photons into visible and ultraviolet emissions. Though in principle further increasing the sensitizers' concentration will enhance the absorption efficiency to produce brighter nanocrystals, typically 20% of Yb3+ ions has been used to avoid the so-called "concentration quenching" effect. Here we report that the concentration quenching effect does not limit the sensitizer concentration and NaYbF4 is the most bright host matrix. Surface quenching and the large size of NaYbF4 nanocrystals are the only factors limiting this optimal concentration. Therefore, we further designed sandwich nanostructures of NaYbF4 between a small template core to allow an epitaxial growth of the size-tunable NaYbF4 shell enclosed by an inert shell to minimize surface quenching. As a result, the suspension containing 25.2 nm sandwich structure UCNCs is 1.85 times brighter than the homogeneously doped ones, and the brightness of each single 25.2 nm heterogeneous UCNC is enhanced by nearly 3 times compared to the NaYF4: 20% Yb3+, 4% Tm3+ UCNCs in similar sizes. Particularly, the blue emission intensities of the UCNCs with the sandwich structure in the size of 13.6 and 25.2 nm are 1.36 times and 3.78 times higher than that of the monolithic UCNCs in the similar sizes. Maximizing the sensitizer concentration will accelerate the development of brighter and smaller UCNCs as more efficient biomolecule probes or photon energy converters.

10.
Opt Lett ; 42(7): 1317-1320, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28362758

RESUMEN

An Er3+-doped ZBLAN glass is used to display a 360° viewable reconstructed image from a hologram on a DMD. The reconstructed image, when the hologram is illuminated by a 852 nm wavelength laser beam, is situated at the inside of the glass, and then a 1530 nm wavelength laser beam is crossed through the image to light it with an upconversion green light, which is viewable at all surrounding directions. This enables us to eliminate the limitation of the viewing zone angle imposed by the finite size of pixels in electro-holographic displays based on digital display chips/panels. The amount of the green light is much higher than that known previously. This is partly caused by the upconversion luminescence induced by 852 and 1530 nm laser beams.

11.
Anal Chem ; 88(7): 3449-54, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26916365

RESUMEN

Optical imaging through the near-infrared (NIR) window provides deep penetration of light up to several centimeters into biological tissues. Capable of emitting 800 nm luminescence under 980 nm illumination, the recently developed upconversion nanoparticles (UCNPs) suggest a promising optical contrast agent for in vivo bioimaging. However, presently they require high-power lasers to excite when applied to small animals, leading to significant scattering background that limits the detection sensitivity as well as a detrimental thermal effect. In this work, we show that the time-gating approach implementing pulsed illumination from a NIR diode laser and time-delayed imaging synchronized via an optical chopper offers detection sensitivity more than 1 order of magnitude higher than the conventional approach using optical band-pass filters (S/N, 47321/6353 vs 5339/58), when imaging UCNPs injected into Kunming mice. The pulsed laser illumination (70 µs ON in 200 µs period) also reduces the overall thermal accumulation to 35% of that under the continuous-wave mode. Technical details are given on setting up the time-gating unit comprising an optical chopper, a pinhole, and a microscopy eyepiece. Being generally compatible with any camera, this provides a convenient and low cost solution to NIR animal imaging using UCNPs as well as other luminescent probes.


Asunto(s)
Luminiscencia , Animales , Rayos Infrarrojos , Rayos Láser , Sustancias Luminiscentes/administración & dosificación , Sustancias Luminiscentes/química , Ratones , Ratones Endogámicos , Nanopartículas/administración & dosificación , Nanopartículas/química , Temperatura , Factores de Tiempo
12.
Anal Chem ; 88(2): 1312-9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26669618

RESUMEN

Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole sample area of a microscope slide to locate every single target object offers many advantages in terms of simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that accommodate solid-phase samples incorporating individual micrometer-sized targets generally rely on digital microscopy and image analysis, with intrinsically low throughput and reliability. Here, we report an advanced on-the-fly stage scanning method to achieve high-precision target location across the whole slide. By integrating X- and Y-axis linear encoders to a motorized stage as the virtual "grids" that provide real-time positional references, we demonstrate an orthogonal scanning automated microscopy (OSAM) technique which can search a coverslip area of 50 × 24 mm(2) in just 5.3 min and locate individual 15 µm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 µm in X and Y directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence intensities and lifetimes for a variety of micrometer-scale luminescent targets, specifically single down-shifting and upconversion microspheres, crystalline microplates, and color-barcoded microrods, as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion nanoparticles.

13.
ISA Trans ; 144: 419-435, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884424

RESUMEN

This paper aims to improve the tracking control performance of the three-stage valve (TSV) controlled electro-hydraulic servo system (EHSS) with parameter uncertainties and other lumped unknown nonlinearities, including unknown dynamics and disturbances. A more accurate nonlinear model of the TSV-controlled EHSS is established and a neural network-based finite-time command-filtered adaptive backstepping control (NNFCABC) method is proposed for the EHSS. Adaptive control is used to deal with the system parameter uncertainties, and the radial basis function neural network (RBFNN) algorithm is introduced to approximate the lumped unknown nonlinearities. The prediction errors of serial-parallel estimation models (SPEMs) and the tracking errors are utilized together to design adaptive laws to estimate the system parameters and the weights of the RBFNNs. The entire control framework utilizes command-filtered control and backstepping techniques. By applying Levant differentiators as command filters and introducing fractional power terms into the virtual control laws and the SPEMs, the proposed NNFCABC theoretically guarantees the tracking performance of the closed-loop control system with finite-time convergence. Comparative simulations and experiments verify the feasibility and superiority of the proposed control scheme.

14.
Light Sci Appl ; 12(1): 293, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057309

RESUMEN

Silicate glasses with metallic nanoparticles (NPs) have been of intense interest in art, science and technology as the plasmonic properties of these NPs equip glass with light modulation capability. The so-called striking technique has enabled precise control of the in situ formation of metallic NPs in silicate glasses for applications from coloured glasses to photonic devices. Since tellurite glasses exhibit the unique combination of comparably easy fabrication, low phonon energy, wide transmission window and high solubility of luminescent rare earth ions, there has been a significant amount of work over the past two decades to adapt the striking technique to form gold or silver NPs in tellurite glasses. Despite this effort, the striking technique has remained insufficient for tellurite glasses to form metal NPs suitable for photonic applications. Here, we first uncover the challenges of the traditional striking technique to create gold NPs in tellurite glass. Then, we demonstrate precise control of the size and concentration of gold NPs in tellurite glass by developing new approaches to both steps of the striking technique: a controlled gold crucible corrosion technique to incorporate gold ions in tellurite glass and a glass powder reheating technique to subsequently transform the gold ions to gold NPs. Using the Mie theory, the size, size distribution and concentration of the gold NPs formed in tellurite glass are determined from the plasmonic properties of the NPs. This fundamental research provides guidance for designing and manipulating the plasmonic properties in tellurite glass for photonics research and applications.

15.
Sci Rep ; 13(1): 15148, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704670

RESUMEN

To evaluate the feasibility and clinical significance of the left perinephric fat sac vein (PFSV) as an anatomical landmark in locating left adrenal gland (LAD) during retroperitoneal laparoscopic left adrenalectomy (RLLA). In this study, a total of 36 patients who underwent RLLA were enrolled from February 2019 and March 2021. By following a vein vessel on the internal surface of perinephric fat sac (PFS), known as PFSV, LAD was searched finally along the upper edge of this vein. The demographic and clinical characteristics of these patients were acquired, including tumor features and perioperative outcomes (operating time, estimated blood loss, complications). The operations were successfully completed in all the 36 patients without conversion to open surgery. In addition, the LAD was successfully found along the upper edge of PFSV in 34 patients. For all operations, the mean operative time was 75 min (range 60-95) and the estimated blood loss was 20 ml (range 10-50). The median oral intake was 20.7 h (range 6-39). The median hospital stay was 6.3 days (range 4-9), and the median follow-up was 12.3 months (range 9-17). Moreover, no intraoperative complications were observed and no residual tumors were detected after 9 to 15 months follow-up. It may be a safe and efficient procedure to use PFSV as a landmark for searching LAD during RLLA, especially for beginners. However, more studies with larger sample size are need to be conducted to further evaluate the outcomes of this method and the significance of PFSV in searching LAD during RLLA.


Asunto(s)
Adrenalectomía , Laparoscopía , Humanos , Glándulas Suprarrenales/cirugía , Riñón , Laparoscopía/efectos adversos , Conversión a Cirugía Abierta
16.
Anal Chem ; 84(22): 9674-8, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23098251

RESUMEN

We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.


Asunto(s)
Antígenos CD34/metabolismo , Regulación de la Expresión Génica , Microscopía/métodos , Automatización , Células HEK293 , Humanos , Factores de Tiempo
17.
Nanotechnology ; 22(32): 325604, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21772069

RESUMEN

Upconversion (UC) fluorescence in NaYF(4):Yb, Er nanoparticles amplified by metal nanostructures was compared in two nanostructure geometries: gold nanoshells surrounding nanoparticles and silver nanostructures adjacent to the nanoparticles, both placed on a dielectric silica surface. Enhanced UC luminescence signals and modified lifetimes induced by these two metals were observed in our study. The UC luminescence intensities of green and red emissions were enhanced by Ag nanostructures by a factor of approximately 4.4 and 3.5, respectively. The corresponding UC lifetimes were reduced ∼ 1.7-fold and ∼ 2.4-fold. In NaYF(4):Yb, Er nanoparticles encapsulated in gold nanoshells, higher luminescence enhancement factors were obtained (∼9.1-fold for the green emission and ∼ 6.7-fold for the red emission). However, the Au shell coating extended the red emission by a factor of 1.5 and did not obviously change the lifetime of green emission. The responsible mechanisms such as plasmonic enhancement and surface effects are discussed.

18.
J Nanosci Nanotechnol ; 10(3): 2219-22, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20355659

RESUMEN

Gd2Si2O7:Eu3+ nanoparticles were prepared by the sol-gel method with citric acid as an additive in the precursor solutions. The crystal structure was analyzed by means of X-ray diffraction (XRD). The results indicate that the alpha-Gd2Si2O7 powders in size 35 nm are obtained at a synthesis temperature of 1,100 degrees C, and the doping ion contents do not influence the crystal structure. The excitation and emission spectra of samples were measured. The dependence of photoluminescence intensity and lifetime of level on Eu3+ concentration and synthesis temperature of samples are also discussed.

19.
RSC Adv ; 10(4): 2404-2415, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35494572

RESUMEN

The development of amorphous films with a wide transmission window and high refractive index is of growing significance due to the strong demand of integrating functional nanoparticles for the next-generation hybrid optoelectronic films. High-index TeO2-based glass films made via the sol-gel process are particularly suitable as their low temperature preparation process promises high compatibility with a large variety of nanoparticles and substrates that suffer from low thermal stability. However, due to the lack of in-depth understanding of the mechanisms of the formation of undesired metallic-Te (highly absorbing species) in the films, the preparation of high-transmission TeO2-based sol-gel films has been severely hampered. Here, by gaining insight into the mechanistic chemistry of metallic-Te formation at different stages during the non-hydrolytic sol-gel process, we identify the chemical route to prevent the generation of metallic-Te in a TeO2-based film. The as-prepared TeO2-based film exhibits a high transmission that is close to the theoretical limit. This opens up a new avenue for advancing the performance of hybrid optoelectronic films via incorporating a large variety of unique nanoparticles.

20.
Nanoscale ; 12(5): 3146-3156, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31967162

RESUMEN

Understanding the dynamics of single nano-scale species at high spatiotemporal resolution is of utmost importance within fields such as bioanalytics or microrheology. Here we introduce the concept of axial position retrieval via scattered light at evanescent fields inside a corralled geometry using optofluidic microstructured optical fibers allowing to unlock information about diffusing nano-scale objects in all three spatial dimensions at kHz acquisition rate for several seconds. Our method yields the lateral positions by localizing the particle in a wide-field microscopy image. In addition, the axial position is retrieved via the scattered light intensity of the particle, as a result of the homogenized evanescent fields inside a microchannel running parallel to an optical core. This method yields spatial localization accuracies <3 nm along the transverse and <21 nm along the retrieved directions. Due to its unique properties such as three dimensional tracking, straightforward operation, mechanical flexibility, strong confinement, fast and efficient data recording, long observation times, low background scattering, and compatibility with microscopy and fiber circuitry, our concept represents a new paradigm in light-based nanoscale detection techniques, extending the capabilities of the field of nanoparticle tracking analysis and potentially allowing for the observation of so far inaccessible processes at the nanoscale level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA