Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Plant Biol ; 24(1): 129, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383284

RESUMEN

BACKGROUND: Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS: In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRT‒PCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRT‒PCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS: This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.


Asunto(s)
Resistencia a la Sequía , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Sequías , Gossypium/genética
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674085

RESUMEN

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Enfermedades de las Plantas , Verticillium , Resistencia a la Enfermedad , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Genoma de Planta , Gossypium/genética , Gossypium/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/efectos de los fármacos , Verticillium/fisiología
3.
BMC Plant Biol ; 22(1): 421, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36045341

RESUMEN

BACKGROUND: Serine carboxypeptidase-like protein (SCPL) plays an important role in response to stress in plant. However, our knowledge of the function of the SCPL gene family is limited. RESULTS: In this study, a comprehensive and systematic analysis of SCPL gene family was conducted to explore the phylogeny and evolution of the SCPL gene in Gossypium hirsutum. The phenotype and molecular mechanism of silencing of the Gh_SCPL42 under Verticillium wilt stress was also studied. Our results showed that 96 SCPL genes were observed in genome of G. hirsutum, which distributed on 25 chromosomes and most of them were located in the nucleus. The phylogenetic tree analysis showed that members of SCPL gene family can be divided into three subgroups in G. hirsutum, which are relatively conservative in evolution. SCPL gene has a wide range of tissue expression types in G. hirsutum. Promoter analysis showed that the most cis-acting elements related to MeJA and ABA were contained. Through RNA-seq combined with genotyping, it was found that 11 GhSCPL genes not only had significant expression changes during Verticillium wilt stress but also had differential SNPs in the upstream, downstream, exonic or intronic regions. The expression of these 11 genes in the resistant (Zhongzhimian 2) and susceptible (Junmian 1) materials was further analyzed by qRT-PCR, it was found that 6 genes showed significant expression differences in the two materials. Among them, Gh_SCPL42 has the most obvious expression change. Furthermore, virus-induced gene silencing (VIGS) showed necrosis and yellowing of leaves and significantly higher disease severity index (DSI) and disease severity rate (DSR) values in VIGS plants than in control silenced Gh_SCPL42 plants. Moreover, the expression levels of genes related to the SA and JA pathways were significantly downregulated. These results show that Gh_SCPL42 might improve resistance to Verticillium wilt through the SA and JA pathways in G. hirsutum. CONCLUSION: In conclusion, our findings indicated that Gh_SCPL42 gene plays an important role in resistance to Verticillium wilt in cotton. It was provided an important theoretical basis for further research on the function of SCPL gene family and the molecular mechanism of resistance to Verticillium wilt in cotton.


Asunto(s)
Verticillium , Carboxipeptidasas , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/fisiología
4.
BMC Genomics ; 22(1): 395, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044774

RESUMEN

BACKGROUND: Domain of unknown function 668 (DUF668) may play a crucial role in the plant growth and developmental response to adverse stress. However, our knowledge of the function of the DUF668 gene family is limited. RESULTS: Our study was conducted based on the DUF668 gene family identified from cotton genome sequencing. Phylogenetic analysis showed that the DUF668 family genes can be classified into four subgroups in cotton. We identified 32 DUF668 genes, which are distributed on 17 chromosomes and most of them located in the nucleus of Gossypium hirsutum. Gene structure and motif analyses revealed that the members of the DUF668 gene family can be clustered in G. hirsutum into two broad groups, which are relatively evolutionarily conserved. Transcriptome data analysis showed that the GhDUF668 genes are differentially expressed in different tissues under various stresses (cold, heat, drought, salt, and Verticillium dahliae), and expression is generally increased in roots and stems. Promoter and expression analyses indicated that Gh_DUF668-05, Gh_DUF668-08, Gh_DUF668-11, Gh_DUF668-23 and Gh_DUF668-28 in G. hirsutum might have evolved resistance to adverse stress. Additionally, qRT-PCR revealed that these 5 genes in four cotton lines, KK1543 (drought resistant), Xinluzao 26 (drought sensitive), Zhongzhimian 2 (disease resistant) and Simian 3 (susceptible), under drought and Verticillium wilt stress were all significantly induced. Roots had the highest expression of these 5 genes before and after the treatment. Among them, the expression levels of Gh_DUF668-08 and Gh_DUF668-23 increased sharply at 6 h and reached a maximum at 12 h under biotic and abiotic stress, which showed that they might be involved in the process of adverse stress resistance in cotton. CONCLUSION: The significant changes in GhDUF668 expression in the roots after adverse stress indicate that GhDUF668 is likely to increase plant resistance to stress. This study provides an important theoretical basis for further research on the function of the DUF668 gene family and the molecular mechanism of adverse stress resistance in cotton.


Asunto(s)
Gossypium , Verticillium , Ascomicetos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Verticillium/genética
5.
Plants (Basel) ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674536

RESUMEN

Cotton is the most widely planted fiber crop in the world, and improving cotton fiber quality has long been a research hotspot. The development of cotton fibers is a complex process that includes four consecutive and overlapping stages, and although many studies on cotton fiber development have been reported, most of the studies have been based on cultivars that are promoted in production or based on lines that are used in breeding. Here, we report a phenotypic evaluation of Gossypium hirsutum based on immature fiber mutant (xin w 139) and wild-type (Xin W 139) lines and a comparative transcriptomic study at seven time points during fiber development. The results of the two-year study showed that the fiber length, fiber strength, single-boll weight and lint percentage of xin w 139 were significantly lower than those of Xin W 139, and there were no significant differences in the other traits. Principal component analysis (PCA) and cluster analysis of the RNA-sequencing (RNA-seq) data revealed that these seven time points could be clearly divided into three different groups corresponding to the initiation, elongation and secondary cell wall (SCW) synthesis stages of fiber development, and the differences in fiber development between the two lines were mainly due to developmental differences after twenty days post anthesis (DPA). Differential expression analysis revealed a total of 5131 unique differentially expressed genes (DEGs), including 290 transcription factors (TFs), between the 2 lines. These DEGs were divided into five clusters. Each cluster functional category was annotated based on the KEGG database, and different clusters could describe different stages of fiber development. In addition, we constructed a gene regulatory network by weighted correlation network analysis (WGCNA) and identified 15 key genes that determined the differences in fiber development between the 2 lines. We also screened seven candidate genes related to cotton fiber development through comparative sequence analysis and qRT-PCR; these genes included three TFs (GH_A08G1821 (bHLH), GH_D05G3074 (Dof), and GH_D13G0161 (C3H)). These results provide a theoretical basis for obtaining an in-depth understanding of the molecular mechanism of cotton fiber development and provide new genetic resources for cotton fiber research.

6.
Plant Sci ; 327: 111562, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509244

RESUMEN

Improving resistance to Verticillium wilt is of great significance for achieving high and stable yields of Upland cotton (Gossypium hirsutum). To deeply understand the genetic basis of cotton resistance to Verticillium wilt, Verticillium wilt-resistant Upland Lumianyan 28 and four Verticillium wilt-susceptible Acala cotton cultivars were used to create four recombinant inbred line (RIL) populations of 469 families through nested hybridization. Phenotypic data collected in five stressful environments were used to select resistant and sensitive lines and create a mixed pool of extreme phenotypes for BSA-seq. A total of 8 QTLs associated with Verticillium wilt resistance were identified on 4 chromosomes, of which qVW-A12-5 was detected simultaneously in the RIL populations and in one of the RIL populations and was identified for the first time. According to the sequence comparison and transcriptome analysis of candidate genes in the QTL interval between parents and pools, 4 genes were identified in the qVW-A12-5 interval. qRT-PCR of parental and phenotypically extreme lines revealed that Gh_CPR30 was induced by and may be a candidate gene for resistance to Verticillium wilt in G. hirsutum. Furthermore, VIGS technology revealed that the disease severity index (DSI) of the Gh_CPR30-silenced plants was significantly higher than that of the control. These results indicate that the Gh_CPR30 gene plays an important role in the resistance of G. hirsutum to Verticillium wilt, and the study provides a molecular basis for analyzing the molecular mechanism underlying G. hirsutum resistance to Verticillium wilt.


Asunto(s)
Sitios de Carácter Cuantitativo , Verticillium , Sitios de Carácter Cuantitativo/genética , Gossypium/genética , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
7.
Plant Sci ; 335: 111813, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543225

RESUMEN

Drought stress has a serious impact on the growth and development of cotton. To explore the relevant molecular mechanism of the drought stress response in cotton, gene mapping based on the QTL interval mapped by simplified genome BSA-seq of the drought-resistance-related RIL population was performed. A QTL region spanning 2.02 Mb on chromosome D07 was selected, and 201 resource materials were genotyped using 9 KASP markers in the interval. After local interval haplotype association analysis, the overlap of the 110 kb peak region confirmed the reliability of this region, and at the same time, the role of GhGF14-30, the only gene in the overlapping region, was modeled in the response of cotton to drought stress. qRTPCR analysis of the materials and population parents proved that this gene plays a role in the drought stress response in cotton. Virus-induced gene silencing proved the importance of this gene in drought-sensitive materials, and drought-resistance-related marker genes also proved that the GhGF14-30 gene may play an important role in the ABA and SOS signaling pathways. This study provides a basis for mining drought stress response functional genes in cotton and lays the foundation for the molecular mechanism of the GhGF14-30 gene in response to drought stress in cotton.


Asunto(s)
Sequías , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Haplotipos , Reproducibilidad de los Resultados , Mapeo Cromosómico , Gossypium/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
8.
PeerJ ; 11: e16445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025668

RESUMEN

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the central enzyme of glycolysis and plays important regulatory roles in plant growth and development and responses to adverse stress conditions. However, studies on the characteristics and functions of cotton GAPDH family genes are still lacking. Methods: In this study, genome-wide identification of the cotton GAPDH gene family was performed, and the phylogeny, gene structures, promoter progenitors and expression profiles of upland cotton GAPDH gene family members were explored by bioinformatics analysis to highlight potential functions. The functions of GhGAPDH9 in response to drought stress were initially validated based on RNA-seq, qRT‒PCR, VIGS techniques and overexpression laying a foundation for further studies on the functions of GAPDH genes. Results: This study is the first systematic analysis of the cotton GAPDH gene family, which contains a total of 84 GAPDH genes, among which upland cotton contains 27 members. Quantitative, phylogenetic and covariance analyses of the genes revealed that the GAPDH gene family has been conserved during the evolution of cotton. Promoter analysis revealed that most cis-acting elements were related to MeJA and ABA. Based on the identified promoter cis-acting elements and RNA-seq data, it was hypothesized that Gh_GAPDH9, Gh_GAPDH11, Gh_GAPDH19 and Gh_GAPDH21 are involved in the response of cotton to abiotic stress. The expression levels of the Gh_GAPDH9 gene in two drought-resistant and two drought-sensitive materials were analyzed by qRT‒PCR and found to be high early in the treatment period in the drought-resistant material. The silencing of Gh_GAPDH9 based on virus-induced gene silencing (VIGS) technology resulted in significant leaf wilting or whole-plant dieback in silenced plants after drought stress compared to the control. The content of-malondialdehyde (MDA) in cotton leaves was significantly increased, and the content of proline (Pro) and chlorophyll (Chl) was reduced. In addition, the leaf wilting and dryness of transgenic lines under drought stress were lower than those of wild-type Arabidopsis, indicating that Gh_GAPDH9 is a positive regulator of drought resistance. In conclusion, our results demonstrate that GAPDH genes play an important role in the response of cotton to abiotic stresses and provide preliminary validation of the function of the Gh_GAPDH9 gene under drought stress. These findings provide an important theoretical basis for further studies on the function of the Gh_GAPDH9 gene and the molecular mechanism of the drought response in cotton.


Asunto(s)
Resistencia a la Sequía , Gossypium , Gossypium/genética , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética
9.
Genes (Basel) ; 14(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672949

RESUMEN

Fuzzless Gossypium hirsutum mutants are ideal materials for investigating cotton fiber initiation and development. In this study, we used the fuzzless G. hirsutum mutant Xinluzao 50 FLM as the research material and combined it with other fuzzless materials for verification by RNA sequencing to explore the gene expression patterns and differences between genes in upland cotton during the fuzz period. A gene ontology (GO) enrichment analysis showed that differentially expressed genes (DEGs) were mainly enriched in the metabolic process, microtubule binding, and other pathways. A weighted gene co-expression network analysis (WGCNA) showed that two modules of Xinluzao 50 and Xinluzao 50 FLM and four modules of CSS386 and Sicala V-2 were highly correlated with fuzz. We selected the hub gene with the highest KME value among the six modules and constructed an interaction network. In addition, we selected some genes with high KME values from the six modules that were highly associated with fuzz in the four materials and found 19 common differential genes produced by the four materials. These 19 genes are likely involved in the formation of fuzz in upland cotton. Several hub genes belong to the arabinogalactan protein and GDSL lipase, which play important roles in fiber development. According to the differences in expression level, 4 genes were selected from the 19 genes and tested for their expression level in some fuzzless materials. The modules, hub genes, and common genes identified in this study can provide new insights into the formation of fiber and fuzz, and provide a reference for molecular design breeding for the genetic improvement of cotton fiber.


Asunto(s)
Fibra de Algodón , Gossypium , Perfilación de la Expresión Génica , Genes de Plantas , Análisis de Secuencia de ARN
10.
Plants (Basel) ; 11(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893607

RESUMEN

Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense.

11.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35881688

RESUMEN

Gossypium barbadense possesses a superior fiber quality because of its fiber length and strength. An in-depth analysis of the underlying genetic mechanism could aid in filling the gap in research regarding fiber strength and could provide helpful information for Gossypium barbadense breeding. Three quantitative trait loci related to fiber strength were identified from a Gossypium barbadense recombinant inbred line (PimaS-7 × 5917) for further analysis. RNA sequencing was performed in the fiber tissues of PimaS-7 × 5917 0-35 days postanthesis. Four specific modules closely related to the secondary wall-thickening stage were obtained using the weighted gene coexpression network analysis. In total, 55 genes were identified as differentially expressed from 4 specific modules. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis, and Gbar_D11G032910, Gbar_D08G020540, Gbar_D08G013370, Gbar_D11G033670, and Gbar_D11G029020 were found to regulate fiber strength by playing a role in the composition of structural constituents of cytoskeleton and microtubules during fiber development. Quantitative real-time PCR results confirmed the accuracy of the transcriptome data. This study provides a quick strategy for exploring candidate genes and provides new insights for improving fiber strength in cotton.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Fibra de Algodón , Redes Reguladoras de Genes , Gossypium/genética , Fenotipo , Fitomejoramiento , Transcriptoma
12.
Genes (Basel) ; 13(6)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35741716

RESUMEN

Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island-Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Fibra de Algodón , Redes Reguladoras de Genes , Gossypium/genética , Fenotipo
13.
Front Plant Sci ; 13: 815643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371113

RESUMEN

Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive diseases in cotton (Gossypium spp.) production, and use of resistant cultivars is the most cost-effective method managing the disease. To understand the genetic basis of cotton resistance to FOV race 7 (FOV7), this study evaluated a recombinant inbred line (RIL) population of 110 lines of G. barbadense from a cross between susceptible Xinhai 14 and resistant 06-146 in eight tests and constructed a high-density genetic linkage map with resequencing-based 933,845 single-nucleotide polymorphism (SNP) markers covering a total genetic distance of 2483.17 cM. Nine quantitative trait loci (QTLs) for FOV7 resistance were identified, including qFOV7-D03-1 on chromosome D03 in two tests. Through a comparative analysis of gene expression and DNA sequence for predicted genes within the QTL region between the two parents and selected lines inoculated with FOV7, GB_D03G0217 encoding for a calmodulin (CaM)-like (CML) protein was identified as a candidate gene. A further analysis confirmed that the expression of GB_D03G0217 was suppressed, leading to increased disease severity in plants of the resistant parent with virus induced gene silencing (VIGS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA