Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Cell Fact ; 15: 69, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27125780

RESUMEN

BACKGROUND: The Gram-positive bacterium Bacillus subtilis has been widely used as a cell factory for the production of proteins due to its generally regarded as safe (GRAS) nature and secretion capability. Of the known secretory pathways in B. subtilis, the majority of proteins are exported from the cytoplasm by Sec pathway, Tat pathway and ABC transporters, etc. However, the production of heterologous proteins by B. subtilis is unfortunately not that straight forward because of the bottlenecks in classical secretion pathways. The aim of this work is to explore a new method for protein production based on non-classical secretion pathway. RESULTS: One D-psicose 3-epimerase (RDPE) which converts D-fructose into D-psicose from Ruminococcus sp. 5_1_39BFAA was successfully and substantially secreted into the extracellular milieu without the direction of signal peptide. Subsequently, we demonstrated that RDPE contained no native signal peptide, and the secretion of RDPE was not dependent on Sec or Tat pathway or due to cell lysis, which indicated that RDPE is a non-classically secreted protein. Then, we attempted to evaluate the possibility of using RDPE as a signal to export eighteen reporter proteins into the culture medium. Five of eleven homologous proteins, two of five heterologous proteins from other bacterium and two heterologous proteins of eukaryotic source were successfully secreted into the extracellular milieu at different secretion levels when they were fused to RDPE mediated by a flexible 21-bp linker to keep a distance between two single proteins. Furthermore, the secretion rates of two fusion proteins (RDPE-DnaK and RDPE-RFP) reached more than 50 %. In addition, most of the fusion proteins retained enzyme or biological activity of their corresponding target proteins, and all of the fusions still had the activity of RDPE. CONCLUSIONS: We found and identified a heterologous non-classically secreted protein RDPE, and showed that RDPE could direct proteins of various types into the culture medium, and thus non-classical protein secretion pathway can be used as a novel secretion pathway for recombinant proteins. This novel strategy for recombinant protein production is helpful to make B. subtilis as a more ideal cell factory for protein production.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Recombinantes/biosíntesis , Vías Secretoras/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Fructosa/metabolismo , Organismos Modificados Genéticamente , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/enzimología , Ruminococcus/genética
2.
Fish Shellfish Immunol ; 43(2): 330-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25592878

RESUMEN

The effects of dietary addition of yeast Rhodotorula benthica (R. benthica) D30 which isolated from local sea mud at levels of 0 (control), 10(5), 10(6) and 10(7) CFU/g feed on the growth performance, digestive enzyme activity, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus were investigated. It was shown that dietary addition of R. benthica D30 significantly increased the growth rates of sea cucumbers (p < 0.05). The amylase activity, cellulase activity and alginase activity were increased for the animals from three probiotics treated groups. And with the supplemented concentration increased, the values of those digestive enzyme activities increased as well. Dietary addition of R. benthica D30 at the level of 10(7) CFU significantly increased the lysozyme, phagocytic and total nitric oxide synthase activity of A. japonicus (p < 0.05). While, the highest values of the phenoloxidase and alkaline phosphatase activity were found in sea cucumbers fed with R. benthica D30 at the level of 10(6) CFU. Whereas adding R. benthica D30 to diet had no significant effects on the total coelomocyte counts and acid phosphatase activity of A. japonicus (p > 0.05). It was observed that adding R. benthica D30 could significantly decrease the cumulative mortality of sea cucumbers. The present study demonstrated that dietary addition of R. benthica D30 could increase growth performance and some digestive enzyme activities, improve immunity and disease resistance of A. japonicus. And the medium (10(6) CFU) and high (10(7) CFU) additional levels showed better effects. It suggests that yeast R. benthica D30 could be a good probiotic for aquaculture.


Asunto(s)
Acuicultura , Probióticos/farmacología , Rhodotorula/química , Stichopus/efectos de los fármacos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Dieta , Digestión/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Probióticos/administración & dosificación , Stichopus/enzimología , Stichopus/crecimiento & desarrollo , Stichopus/inmunología
3.
Cancers (Basel) ; 14(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35804915

RESUMEN

This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/ß/γ, Δ133p53α/ß/γ, and Δ160p53α/ß/γ might have clinical relevance in the diagnosis and effective treatments of cancer.

4.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436432

RESUMEN

The signal recognition particle (SRP) is conserved in all living organisms, and it cotranslationally delivers proteins to the inner membrane or endoplasmic reticulum. Recently, SRP loss was found not to be lethal in either the eukaryote Saccharomyces cerevisiae or the prokaryote Streptococcus mutans In Escherichia coli, the role of SRP in mediating inner membrane protein (IMP) targeting has long been studied. However, the essentiality of SRP remains a controversial topic, partly hindered by the lack of strains in which SRP is completely absent. Here we show that the SRP was nonessential in E. coli by suppressor screening. We identified two classes of extragenic suppressors-two translation initiation factors and a ribosomal protein-all of which are involved in translation initiation. The translation rate and inner membrane proteomic analyses were combined to define the mechanism that compensates for the lack of SRP. The primary factor that contributes to the efficiency of IMP targeting is the extension of the time window for targeting by pausing the initiation of translation, which further reduces translation initiation and elongation rates. Furthermore, we found that easily predictable features in the nascent chain determine the specificity of protein targeting. Our results show why the loss of the SRP pathway does not lead to lethality. We report a new paradigm in which the time delay in translation initiation is beneficial during protein targeting in the absence of SRP.IMPORTANCE Inner membrane proteins (IMPs) are cotranslationally inserted into the inner membrane or endoplasmic reticulum by the signal recognition particle (SRP). Generally, the deletion of SRP can result in protein targeting defects in Escherichia coli Suppressor screening for loss of SRP reveals that pausing at the translation start site is likely to be critical in allowing IMP targeting and avoiding aggregation. In this work, we found for the first time that SRP is nonessential in E. coli The time delay in initiation is different from the previous mechanism that only slows down the elongation rate. It not only maximizes the opportunity for untranslated ribosomes to be near the inner membrane but also extends the time window for targeting translating ribosomes by decreasing the speed of translation. We anticipate that our work will be a starting point for a more delicate regulatory mechanism of protein targeting.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
5.
Front Microbiol ; 12: 690286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305852

RESUMEN

Signal recognition particle (SRP) is critical for delivering co-translational proteins to the bacterial inner membrane. Previously, we identified SRP suppressors in Escherichia coli that inhibit translation initiation and elongation, which provided insights into the mechanism of bypassing the requirement of SRP. Suppressor mutations tended to be located in regions that govern protein translation under evolutionary pressure. To test this hypothesis, we re-executed the suppressor screening of SRP. Here, we isolated a novel SRP suppressor mutation located in the Shine-Dalgarno sequence of the S10 operon, which partially offset the targeting defects of SRP-dependent proteins. We found that the suppressor mutation decreased the protein translation rate, which extended the time window of protein targeting. This increased the possibility of the correct localization of inner membrane proteins. Furthermore, the fidelity of translation was decreased in suppressor cells, suggesting that the quality control of translation was inactivated to provide an advantage in tolerating toxicity caused by the loss of SRP. Our results demonstrated that the inefficient protein targeting due to SRP deletion can be rescued through modulating translational speed and accuracy.

6.
Sci Rep ; 7: 44023, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276482

RESUMEN

Non-classical protein secretion in bacteria is a common phenomenon. However, the selection principle for non-classical secretion pathways remains unclear. Here, our experimental data, to our knowledge, are the first to show that folded multimeric proteins can be recognized and excreted by a non-classical secretion pathway in Bacillus subtilis. We explored the secretion pattern of a typical cytoplasmic protein D-psicose 3-epimerase from Ruminococcus sp. 5_1_39BFAA (RDPE), and showed that its non-classical secretion is not simply due to cell lysis. Analysis of truncation variants revealed that the C- and N-terminus, and two hydrophobic domains, are required for structural stability and non-classical secretion of RDPE. Alanine scanning mutagenesis of the hydrophobic segments of RDPE revealed that hydrophobic residues mediated the equilibrium between its folded and unfolded forms. Reporter mCherry and GFP fusions with RDPE regions show that its secretion requires an intact tetrameric protein complex. Using cross-linked tetramers, we show that folded tetrameric RDPE can be secreted as a single unit. Finally, we provide evidence that the non-classical secretion pathway has a strong preference for multimeric substrates, which accumulate at the poles and septum region. Altogether, these data show that a multimer recognition mechanism is likely applicable across the non-classical secretion pathway.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Carbohidrato Epimerasas/metabolismo , Ruminococcus/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Carbohidrato Epimerasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ruminococcus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA