Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(4): 2284-2291, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35044752

RESUMEN

One of the immediate challenges for the large-scale commercialization of hydrogen-based fuel cells is to develop cost-effective electrocatalysts to enable cathodic oxygen reduction reaction (ORR). Herein, we focus on the potential of the two-dimensional (2D) ternary chalcogenide Ni2SbTe2 monolayer as a high-performance electrocatalyst for the ORR using density function theory. Our computed results reveal that there are an obvious hybridization and electron transfer between the O 2p and Te 5p orbitals, which can activate the adsorbed oxygen and trigger the whole ORR process, with an overpotential as low as 0.33 V. In addition, the adsorption capacity of the monolayer surface for oxygen molecules can be effectively enhanced by doping with Fe or Co atoms. The Ni2SbTe2 monolayers doped with Fe or Co atoms not only maintain their original excellent ORR catalytic activity but also improve selectivity toward the four-electron (4e) reduction pathway. We highly anticipate that this work can provide excellent candidates and new ideas for designing low-cost and high-performance ORR catalysts to replace noble metal Pt-based catalysts in fuel cells.

2.
J Colloid Interface Sci ; 629(Pt A): 971-980, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152621

RESUMEN

Oxygen reduction reaction (ORR) electrocatalysts with excellent activity and high selectivity toward the efficient four-electron (4e) pathway are very important for the wide application of fuel cells and are worth searching vigorously. In this study, r-RhTe monolayer is identified as a good ORR electrocatalyst from three 2D RhTe configurations with low Rh-loading (i.e., r-RhTe, o-RhTe and h-RhTe) on the basis of the first-principles calculations. For the most energetically stable r-RhTe, two adjacent positively charged Te atoms on the material surface can provide an active site for oxygen dissociation. Coupled with its high stability and intrinsic conductivity, 2D r-RhTe monolayer is confirmed to possess good catalytic activity and high reaction selectivity toward ORR. Moreover, under the ligand effect caused by the substitution of Cr, Mn and Fe, the ORR catalytic activity of r-RhTe monolayer could be effectively enhanced, where very small over-potential was achieved, and even comparable to or lower than the state-of-the-art Pt (111). This shows it has considerably high ORR activity. This work is highly anticipated to provide excellent candidate materials for ORR catalysis, and the related researches based on the Rh-Te materials will provide a new way to design high-performance ORR electrocatalysts to substitute the precious metal Pt-based catalysts.

3.
Nanoscale ; 14(30): 10918-10928, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852067

RESUMEN

In view of the weak aromatic characteristic resulting from the weak π-bonding ability (different from the analogous graphene), employing two-dimensional (2D) silicene and germanene monolayers could be one of the most promising ways to realize a new type of highly efficient and nonprecious catalyst for the hydrogen evolution reaction (HER). However, the HER activity of pristine silicene and germanene has to be improved, although both of them can exhibit a good change trend. Particularly, the hydrogen phenomenon can occur under moderate or high H* coverage on 2D silicene and germanene. To overcome these bottlenecks, in this study we identify the most effective strategy through doping P with a lone pair to significantly improve the HER catalytic activity under a high H* coverage, by screening a series of IIIA (i.e., B, Al, Ga, In and Tl) and VA (i.e., N, P, As, Sb and Bi) heteroatoms with different electronegativity under detailed DFT calculations. It is revealed that the doped P atoms and almost all the Si/Ge atoms can uniformly serve as highly active sites. Especially, in view of the existence of the lone pair, doping P effectively prevents hydrogenation (even under full H* coverage) by increasing the structural rigidity. Moreover, the P-doping concentration also plays a crucial role in obtaining high HER activity. The relevant mechanisms have been analyzed in detail. Clearly, all these fascinating findings are beneficial for realizing new HER electrocatalysts based on the excellent silicene or germanene nanomaterials, and even other Si/Ge-related materials in the near future.

4.
ACS Appl Mater Interfaces ; 13(39): 46998-47009, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34549934

RESUMEN

The development of highly efficient and cheap electrocatalysts for the oxygen evolution reaction (OER) is highly desirable in typical water-splitting electrolyzers to achieve renewable energy production, yet it still remains a huge challenge. Herein, we have presented a simple procedure to construct a new nanofibrous hybrid structure with the interface connecting the surface of CeO2 and CoO as a high-performance electrocatalyst toward the OER through an electrospinning-calcination-reduction process. The resultant CeO2-CoO nanofibers exhibit excellent electrocatalytic properties with a small overpotential of 296 mV at 10 mA cm-2 for the OER, which is superior to many previously reported nonprecious metal-based and commercial RuO2 catalysts. Furthermore, the prepared CeO2-CoO nanofibers display remarkable long-term stability, which can be maintained for 130 h with nearly no attenuation of OER activity in an alkaline electrolyte. A combined experimental and theoretical investigation reveals that the excellent OER properties of CeO2-CoO nanofibers are due to the unique interfacial architecture between CeO2 and CoO, where abundant oxygen vacancies can be generated due to the incomplete matching of atomic positions of two parts, leading to the formation of many low-coordinated Co sites with high OER catalytic activity. This research provides a practical and promising opportunity for the application of heterostructured nonprecious metal oxide catalysts for high-efficiency electrochemical water oxidation.

5.
ACS Appl Mater Interfaces ; 12(50): 56095-56107, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263398

RESUMEN

It is of practical importance to develop a stable and accessible methane combustion catalyst which could retain an excellent activity under drastic conditions. Herein, we introduce a facile approach to extend the stability of conventional Pd/Al2O3 catalysts through tailoring the pore size of mesoporous aluminas (MAs) and the interaction between Pd and Al. By modulating the addition of templates (deoxycholic acid and polyvinylpyrrolidone), a series of MAs with tunable and uniform pore size were obtained through a designed sol-gel method. Unexpectedly, Pd/MA-800-5 catalyst prepared with relatively large pore size (ca. 12 nm) MAs exhibited an efficient and sustained performance under a variety of operating conditions, while those prepared with small pore size (ca. 5-7 nm) MAs suffered from a significant loss of activity during high temperature cyclic reactions (280-850 °C) due to the decomposition of confined PdO. The enhancement could be attributed to the suitable particle size, higher crystallinity, generated active sites, improved reducibility, and thermal stability of PdO species. Moreover, the variation of pore size also resulted in a different reaction mechanism. Such a pore size promotion strategy effectively invoked a superior catalytic performance while keeping the catalyst components simple, which can be extended to prepare other high-performance metal oxide-supported catalysts for catalytic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA