RESUMEN
High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Conversely, in HPV-18-transformed HeLa cervical carcinoma cells, inhibition of O-GlcNAc with a low concentration of a chemical inhibitor impaired the transformed phenotypes in vitro. We showed that E6 elevated c-MYC via increased protein stability attributable to O-GlcNAcylation on Thr58. Reduction of HPV-mediated cell viability by a high concentration of O-GlcNAc inhibitor was partially rescued by elevated c-MYC. Finally, knockdown of OGT or O-GlcNAc inhibition in HeLa cells or in TC-1 cells, a mouse cell line transformed by HPV16 E6/E7 and activated K-RAS, reduced c-MYC and suppressed tumorigenesis and metastasis. Thus, we have uncovered a mechanism for HPV oncoprotein-mediated transformation. These findings may eventually aid in the development of effective therapeutics for HPV-associated malignancies by targeting aberrant O-GlcNAc.
Asunto(s)
Carcinogénesis , N-Acetilglucosaminiltransferasas/fisiología , Proteínas Oncogénicas Virales/fisiología , Proteínas Represoras/fisiología , Neoplasias del Cuello Uterino/etiología , Animales , Línea Celular Tumoral , Femenino , Genes myc , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas E7 de Papillomavirus/fisiología , Neoplasias del Cuello Uterino/virologíaRESUMEN
BACKGROUND & AIMS: Variants in genes that regulate autophagy have been associated with Crohn's disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to the pathogenesis of CD. We investigated the role of the microRNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD. METHODS: We studied the ability of MIR106B and MIR93 to regulate ATG transcripts in human cancer cell lines (HCT116, SW480, HeLa, and U2OS) using luciferase report assays and bioinformatics analyses; MIR106B and MIR93 mimics and antagonists were transfected into cells to modify levels of miRs. Cells were infected with LF82, a CD-associated adherent-invasive strain of Escherichia coli, and monitored by confocal microscopy and for colony-forming units. Colon tissues from 41 healthy subjects (controls), 22 patients with active CD, 16 patients with inactive CD, and 7 patients with chronic inflammation were assessed for levels of MIR106B and ATG16L1 by in situ hybridization and immunohistochemistry. RESULTS: Silencing Dicer1, an essential processor of miRs, increased levels of ATG protein and formation of autophagosomes in cells, indicating that miRs regulate autophagy. Luciferase reporter assays indicated that MIR106B and MIR93 targeted ATG16L1 messenger RNA. MIR106B and MIR93 reduced levels of ATG16L1 and autophagy; these increased after expression of ectopic ATG16L1. In contrast, MIR106B and MIR93 antagonists increased formation of autophagosomes. Levels of MIR106B were increased in intestinal epithelia from patients with active CD, whereas levels of ATG16L1 were reduced compared with controls. Levels of c-Myc were also increased in intestinal epithelia of patients with active CD compared with controls. These alterations could impair removal of CD-associated bacteria by autophagy. CONCLUSIONS: In human cell lines, MIR106B and MIR93 reduce levels of ATG16L1 and autophagy and prevent autophagy-dependent eradication of intracellular bacteria. This process also appears to be altered in colon tissues from patients with active CD.
Asunto(s)
Autofagia/inmunología , Proteínas Portadoras/inmunología , Enfermedad de Crohn/inmunología , Células Epiteliales/inmunología , Escherichia coli , MicroARNs/inmunología , Autofagia/genética , Proteínas Relacionadas con la Autofagia , Estudios de Casos y Controles , Línea Celular Tumoral , Enfermedad de Crohn/genética , ARN Helicasas DEAD-box/inmunología , Células HCT116 , Células HeLa , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myc/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ribonucleasa III/inmunologíaRESUMEN
OBJECTIVE: Metformin is one of the most widely used drugs for the treatment of type 2 diabetes. Recent investigations demonstrated that application of metformin reduces cancer risk. The present study aimed to determine the role of liver kinase B1 (LKB1) in the response of cervical cancer cells to metformin. METHODS: LKB1 expression and the integrity of LKB1-AMPK signaling were determined with immunoblot in 6 cervical cancer cell lines. Cellular sensitivity to metformin was analyzed with MTT assay. RESULTS: Metformin inhibited growth of cervical cancer cells, C33A, Me180, and CaSki, but was less effective against HeLa, HT-3, and MS751 cells. Analyzing the expression status and the integrity of LKB1-AMPK-mTOR signaling, we found that cervical cancer cells sensitive to metformin were LKB1 intact and exerted an integral AMPK-mTOR signaling response after the treatment. Ectopic expression of LKB1 with stable transduction system or inducible expression construct in endogenous LKB1 deficient cells improved the activation of AMPK, promoted the inhibition of mTOR, and prompted the sensitivity of cells to metformin. In contrast, knock-down of LKB1 compromised cellular response to metformin. Our further investigation demonstrated that metformin could induce both apoptosis and autophagy in cervical cancer cells when LKB1 is expressed. CONCLUSIONS: Metformin is a potential drug for the treatment of cervical cancers, in particular to those with intact LKB1 expression. Administration of cell metabolism agonists may enhance LKB1 tumor suppression, inhibit cell growth, and reduce tumor cell viability via the activation of LKB1-AMPK signaling.
Asunto(s)
Metformina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/enzimología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias del Cuello Uterino/patologíaRESUMEN
BACKGROUND: Treatment of Crohn's disease (CD) remains to be a challenge due to limited insights for its pathogenesis. We aimed to determine the role of O-Linked ß-N-acetylglucosamine (O-GlcNAc) in the development of CD and evaluate therapeutic effects of O-GlcNAc inhibitors on CD. METHODS: O-GlcNAc in intestinal epithelial tissues of CD, adherent-invasive Escherichia coli (AIEC) LF82-infected cells and mice was determined by immunoblot and immunohistochemistry. AIEC LF82 and dextran sulfate sodium were administrated into C57BL/6 mice for estabolishing inflammatory bowel disease model and for therapeutic study. FINDINGS: O-GlcNAc was increased in intestinal epithelial tissues of CD patients and AIEC LF82-infected mice. Infection of AIEC LF82 up-regulated the level of UDP-GlcNAc and increased O-GlcNAc in human colon epithelial HCT116 and HT-29 cells. We identified that IKKß and NF-κB were O-Glycosylated in AIEC LF82-treated cells. Mutations of IKKß (S733A) and p65 (T352A) abrogated the O-GlcNAc in IKKß and NF-κB and inhibited AIEC LF82-induced activation of NF-κB. Application of 6-diazO-5-oxO-L-norleucine, an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAc, inactivated NF-κB in AIEC LF82-infected cells, enhanced the formation of autophagy, promoted the removal of cell-associated AIEC LF82, alleviated intestinal epithelial inflammation, and improved the survival of the colitis mice. INTERPRETATION: Intestinal inflammation in CD is associated with increased O-GlcNAc modification, which is required for NF-κB activation and suppression of autophagy. Targeting O-GlcNAc could be an effective therapy for inflammatory bowel disease. FUNDING: National Natural Science Foundation of China (Nos. 81573087 and 81772924) and International Cooperation Foundation of Jilin Province (20190701006GH).
Asunto(s)
Acetilglucosamina/metabolismo , Enfermedad de Crohn/metabolismo , FN-kappa B/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Autofagia , Femenino , Células HCT116 , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Inactivating mutations in the liver kinase B1 (LKB1) tumor suppressor gene underlie Peutz-Jeghers syndrome (PJS) and occur frequently in various human cancers. We previously showed that LKB1 regulates centrosome duplication via PLK1. Here, we report that LKB1 further helps to maintain genomic stability through negative regulation of survivin, a member of the chromosomal passenger complex (CPC) that mediates CPC targeting to the centromere. We found that loss of LKB1 led to accumulation of misaligned and lagging chromosomes at metaphase and anaphase and increased the appearance of multi- and micro-nucleated cells. Ectopic LKB1 expression reduced these features and improved mitotic fidelity in LKB1-deficient cells. Through pharmacological and genetic manipulations, we showed that LKB1-mediated repression of survivin is independent of AMPK, but requires p53. Consistent with the key influence of LKB1 on survivin expression, immunohistochemical analysis indicated that survivin is highly expressed in intestinal polyps from a PJS patient. Lastly, we reaffirm a potential therapeutic avenue to treat LKB1-mutated tumors by demonstrating the increased sensitivity to survivin inhibitors of LKB1-deficient cells.
Asunto(s)
Centrómero/efectos de los fármacos , Genes p53/efectos de los fármacos , Genoma/efectos de los fármacos , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Survivin/biosíntesis , Survivin/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular Tumoral , Aberraciones Cromosómicas , Humanos , Pólipos Intestinales/genética , Mitosis/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Ensayo de Tumor de Célula Madre , Regulación hacia Arriba/genéticaRESUMEN
TP53 mutations frequently occur in head and neck squamous cell carcinoma (HNSCC) patients without human papillomavirus infection. The recurrence rate for these patients is distinctly high. It has been actively explored to identify agents that target TP53 mutations and restore wild-type (WT) TP53 activities in HNSCC. PRIMA-1 (p53-reactivation and induction of massive apoptosis-1) and its methylated analogue PRIMA-1Met (also called APR-246) were found to be able to reestablish the DNA-binding activity of p53 mutants and reinstate the functions of WT p53. Herein we report that piperlongumine (PL), an alkaloid isolated from Piper longum L., synergizes with APR-246 to selectively induce apoptosis and autophagic cell death in HNSCC cells, whereas primary and immortalized mouse embryonic fibroblasts and spontaneously immortalized non-tumorigenic human skin keratinocytes (HaCat) are spared from the damage by the co-treatment. Interestingly, PL-sensitized HNSCC cells to APR-246 are TP53 mutation-independent. Instead, we demonstrated that glutathione S-transferase pi 1 (GSTP1), a GST family member that catalyzes the conjugation of GSH with electrophilic compounds to fulfill its detoxification function, is highly expressed in HNSCC tissues. Administration of PL and APR-246 significantly suppresses GSTP1 activity, resulting in the accumulation of ROS, depletion of GSH, elevation of GSSG, and DNA damage. Ectopic expression of GSTP1 or pre-treatment with antioxidant N-acetyl-L-cysteine (NAC) abrogates the ROS elevation and decreases DNA damage, apoptosis, and autophagic cell death prompted by PL/APR-246. In addition, administration of PL and APR-246 impedes UMSCC10A xenograft tumor growth in SCID mice. Taken together, our data suggest that HNSCC cells are selectively sensitive to the combination of PL and APR-246 due to a remarkably synergistic effect of the co-treatment in the induction of ROS by suppression of GSTP1.
Asunto(s)
Carcinoma de Células Escamosas/patología , Dioxolanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gutatión-S-Transferasa pi/metabolismo , Neoplasias de Cabeza y Cuello/patología , Quinuclidinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Quimioterapia Combinada , Femenino , Estudios de Seguimiento , Gutatión-S-Transferasa pi/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Pronóstico , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Mutations of TP53 may reach 70% - 85% in HNSCC patients without human papillomavirus (HPV) infection. Recurrence rate remains particularly high for HNSCC patients with mutations in the TP53 gene although patients are responsive to surgery, irradiation, and chemotherapy early in the treatment. p53-Reactivation and Induction of Massive Apoptosis-1 (PRIMA-1) and its methylated analogue PRIMA-1Met (also known as APR-246) are quinuclidine compounds that rescue the DNA-binding activity of mutant p53 (mut-p53) and restore the potential of wild-type p53. In the current report, we demonstrated that inhibition of poly (ADP-ribose) polymerase-1 (PARP-1) with 6(5H)-phenanthridinone (PHEN) and N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N, N-dimethylamino) acetamide hydrochloride (PJ34) sensitizes UMSCC1, UMSCC14, and UMSCC17A, three HNSCC cell lines to the treatment of APR-246. PHEN enhances APR-246-induced apoptosis, but not programmed necrosis or autophagic cell death in HNSCC cells. The PARP-1 inhibition-induced sensitization of HNSCC cells to APR-246 is independent of TP53 mutation. Instead, PARP-1 inhibition promotes APR-246-facilitated inactivation of thioredoxin reductase 1 (TrxR1), leading to ROS accumulation and DNA damage. Overexpression of TrxR1 or application of antioxidant N-acetyl-L-cysteine (NAC) depletes the ROS increase, reduces DNA damage, and decreases cell death triggered by APR-246/PHEN in HNSCC cells. Thus, we have characterized a new function of PARP-1 inhibitor in HNSCC cells by inactivation of TrxR1 and elevation of ROS and provide a novel therapeutic strategy for HNSCC by the combination of PARP-1 inhibitors and APR-246.
RESUMEN
The PML tumor suppressor gene is consistently disrupted by t(15;17) in patients with acute promyelocytic leukemia. Promyelocytic leukemia protein (PML) is a multifunctional protein that plays essential roles in cell growth regulation, apoptosis, transcriptional regulation, and genome stability. Our study here shows that PML colocalizes and associates in vivo with the DNA damage response protein TopBP1 in response to ionizing radiation (IR). Both PML and TopBP1 colocalized with the IR-induced bromodeoxyuridine single-stranded DNA foci. PML and TopBP1 also colocalized with Rad50, Brca1, ATM, Rad9, and BLM. IR and interferon (IFN) coinduce the expression levels of both TopBP1 and PML. In PML-deficient NB4 cells, TopBP1 was unable to form IR-induced foci. All-trans-retinoic acid induced reorganization of the PML nuclear body (NB) and reappearance of the IR-induced TopBP1 foci. Inhibition of PML expression by siRNA is associated with a significant decreased in TopBP1 expression. Furthermore, PML-deficient cells express a low level of TopBP1, and its expression cannot be induced by IR or IFN. Adenovirus-mediated overexpression of PML in PML(-/-) mouse embryo fibroblasts substantially increased TopBP1 expression, which colocalized with the PML NBs. These studies demonstrated a mechanism of PML-dependent expression of TopBP1. PML overexpression induced TopBP1 protein but not the mRNA expression. Pulse-chase labeling analysis demonstrated that PML overexpression stabilized the TopBP1 protein, suggesting that PML plays a role in regulating the stability of TopBP1 in response to IR. Together, our findings demonstrate that PML regulates TopBP1 functions by association and stabilization of the protein in response to IR-induced DNA damage.
Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares , Factores de Transcripción/metabolismo , Adenoviridae/genética , Secuencias de Aminoácidos , Northern Blotting , Western Blotting , Bromodesoxiuridina/farmacología , Reparación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN , Humanos , Interferones/farmacología , Microscopía Fluorescente , Plásmidos/metabolismo , Pruebas de Precipitina , Proteína de la Leucemia Promielocítica , Unión Proteica , Radiación Ionizante , Factores de Tiempo , Tretinoina/farmacología , Células Tumorales Cultivadas , Proteínas Supresoras de TumorRESUMEN
Liver kinase B1 (LKB1) functions as a tumor suppressor encoded by STK11, a gene that mutated in Peutz-Jeghers syndrome and in sporadic cancers. Previous studies showed that LKB1 participates in IR- and ROS-induced DNA damage response (DDR). However, the impact of LKB1 mutations on targeted cancer therapy remains unknown. Herein, we demonstrated that LKB1 formed DNA damage-induced nuclear foci and co-localized with ataxia telangiectasia mutated kinase (ATM), γ-H2AX, and breast cancer susceptibility 1 (BRCA1). ATM mediated LKB1 phosphorylation at Thr 363 following the exposure of cells to ionizing radiation (IR). LKB1 interacted with BRCA1, a downstream effector in DDR that is recruited to sites of DNA damage and functions directly in homologous recombination (HR) DNA repair. LKB1 deficient cells exhibited delayed DNA repair due to insufficient HR. Notably, LKB1 deficiency sensitized cells to poly (ADP-ribose) polymerase (PARP) inhibitors. Thus, we have demonstrated a novel function of LKB1 in DNA damage response. Cancer cells lacking LKB1 are more susceptible to DNA damage-based therapy and, in particular, to drugs that further impair DNA repair, such as PARP inhibitors.
Asunto(s)
Daño del ADN , Resistencia a Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Reparación del ADN , Recombinación Homóloga , Humanos , Fosforilación , Unión Proteica , Transporte de ProteínasRESUMEN
LKB1 (also known as serine-threonine kinase 11, STK11) is a tumor suppressor, which is mutated or deleted in Peutz-Jeghers syndrome (PJS) and in a variety of cancers. Physiologically, LKB1 possesses multiple cellular functions in the regulation of cell bioenergetics metabolism, cell cycle arrest, embryo development, cell polarity, and apoptosis. New studies demonstrated that LKB1 may also play a role in the maintenance of function and dynamics of hematopoietic stem cells. Over the past years, personalized therapy targeting specific genetic aberrations has attracted intense interests. Within this review, several agents with potential activity against aberrant LKB1 signaling have been discussed. Potential strategies and challenges in targeting LKB1 inactivation are also considered.
Asunto(s)
Genes Supresores de Tumor , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Humanos , Mutación , Neoplasias/terapia , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
The promyelocytic leukemia protein (PML) plays an essential role in multiple pathways of apoptosis. Our previous study showed that PML enhances tumor necrosis factor-induced apoptosis by inhibiting the NFkappaB survival pathway. To continue exploring the mechanism of PML-induced apoptosis, we performed a DNA microarray screening of PML target genes using a PML-inducible stable cell line. We found that Survivin was one of the downstream target genes of PML. Cotransfection experiments demonstrated that PML4 repressed transactivation of the Survivin promoter in an isoform-specific manner. Western blot analysis demonstrated that induced PML expression down-regulated Survivin. Inversely, PML knockdown by siRNA up-regulated Survivin expression. A substantial increase in Survivin expression was found in PML-deficient cells. Re-expression of PML in PML-/- mouse embryo fibroblasts down-regulated the expression of Survivin. Furthermore, cells arrested at the G2/M cell cycle phase expressed a high level of Survivin and a significantly lower level of PML. Overexpression of PML in A549 cells reduced Survivin expression leading to massive apoptotic cell death associated with activation of procaspase 9, caspase 3, and caspase 7. Together, our results demonstrate a novel mechanism of PML-induced apoptosis by down-regulation of Survivin.