Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eukaryot Cell ; 12(2): 224-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23223035

RESUMEN

Biofilm formation is associated with the ability of Candida albicans, the major human fungal pathogen, to resist antifungal therapies and grow on tissues, catheters, and medical devices. In order to better understand the relationship between C. albicans morphology and biofilm formation, we examined biofilms generated in response to expression of UME6, a key filament-specific transcriptional regulator. As UME6 levels rise, C. albicans cells are known to transition from yeast to hyphae, and we also observed a corresponding increase in the level of biofilm formation in vitro. In addition to forming a biofilm, we observed that a C. albicans strain expressing constitutive high levels of UME6 promoted tissue invasion in a reconstituted human three-dimensional model of oropharyngeal candidiasis. Confocal microscopy indicated that both the top and bottom layers of the biofilm generated upon high-level constitutive UME6 expression consist primarily of hyphal cells. UME6-driven biofilm formation was reduced upon deletion of Hgc1, a cyclin-related protein important for hyphal development, as well as Sun41, a putative cell wall glycosidase. Constitutive high-level UME6 expression was also able to completely bypass both the filamentation and biofilm defects of a strain deleted for Efg1, a key transcriptional regulator of these processes. Finally, we show that both Sun41 and Efg1 affect the ability of UME6 to induce certain filament-specific transcripts. Overall, these findings indicate a strong correlation between increased C. albicans hyphal growth and enhanced biofilm formation and also suggest functional relationships between UME6 and other regulators of biofilm development.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Ciclinas/metabolismo , Proteínas Fúngicas/genética , Glicósido Hidrolasas/metabolismo , Hifa/fisiología , Factores de Transcripción/genética , Células Cultivadas , Técnicas de Cocultivo , Células Epiteliales/microbiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Mucosa Bucal/microbiología , Factores de Transcripción/metabolismo , Activación Transcripcional
2.
Mol Cancer Ther ; 22(1): 123-134, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36162055

RESUMEN

In fusion-negative rhabdomyosarcoma (FN-RMS), a pediatric malignancy with skeletal muscle characteristics, >90% of high-risk patients have mutations that activate the RAS/MEK signaling pathway. We recently discovered that SNAI2, in addition to blocking myogenic differentiation downstream of MEK signaling in FN-RMS, represses proapoptotic BIM expression to protect RMS tumors from ionizing radiation (IR). As clinically relevant concentrations of the MEK inhibitor trametinib elicit poor responses in preclinical xenograft models, we investigated the utility of low-dose trametinib in combination with IR for the treatment of RAS-mutant FN-RMS. We hypothesized that trametinib would sensitize FN-RMS to IR through its downregulation of SNAI2 expression. While we observed little to no difference in myogenic differentiation or cell survival with trametinib treatment alone, robust differentiation and reduced survival were observed after IR. In addition, IR-induced apoptosis was significantly increased in FN-RMS cells treated concurrently with trametinib, as was increased BIM expression. SNAI2's role in these processes was established using overexpression rescue experiments, where overexpression of SNAI2 prevented IR-induced myogenic differentiation and apoptosis. Moreover, combining MEK inhibitor with IR resulted in complete tumor regression and a 2- to 4-week delay in event-free survival (EFS) in preclinical xenograft and patient-derived xenograft models. Our findings demonstrate that the combination of MEK inhibition and IR results in robust differentiation and apoptosis, due to the reduction of SNAI2, which leads to extended EFS in FN-RMS. SNAI2 thus is a potential biomarker of IR insensitivity and target for future therapies to sensitize aggressive sarcomas to IR.


Asunto(s)
Rabdomiosarcoma , Niño , Humanos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Rabdomiosarcoma/radioterapia , Diferenciación Celular , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Quinasas de Proteína Quinasa Activadas por Mitógenos , Línea Celular Tumoral , Factores de Transcripción de la Familia Snail
3.
Mol Cell Biol ; 43(11): 547-565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882064

RESUMEN

Rhabdomyosarcoma (RMS) is a pediatric malignancy of the muscle with characteristics of cells blocked in differentiation. NOTCH1 is an oncogene that promotes self-renewal and blocks differentiation in the fusion negative-RMS sub-type. However, how NOTCH1 expression is transcriptionally maintained in tumors is unknown. Analyses of SNAI2 and CTCF chromatin binding and HiC analyses revealed a conserved SNAI2/CTCF overlapping peak downstream of the NOTCH1 locus marking a sub-topologically associating domain (TAD) boundary. Deletion of the SNAI2-CTCF peak showed that it is essential for NOTCH1 expression and viability of FN-RMS cells. Reintroducing constitutively activated NOTCH1-ΔE in cells with the SNAI2-CTCF peak deleted restored cell-viability. Ablation of SNAI2 using CRISPR/Cas9 reagents resulted in the loss of majority of RD and SMS-CTR FN-RMS cells. However, the few surviving clones that repopulate cultures have recovered NOTCH1. Cells that re-establish NOTCH1 expression after SNAI2 ablation are unable to differentiate robustly as SNAI2 shRNA knockdown cells; yet, SNAI2-ablated cells continued to be exquisitely sensitive to ionizing radiation. Thus, we have uncovered a novel mechanism by which SNAI2 and CTCF maintenance of a sub-TAD boundary promotes rather than represses NOTCH1 expression. Further, we demonstrate that SNAI2 suppression of apoptosis post-radiation is independent of SNAI2/NOTCH1 effects on self-renewal and differentiation.


Asunto(s)
Cromatina , Rabdomiosarcoma , Niño , Humanos , Factor de Unión a CCCTC/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Rabdomiosarcoma/genética , ARN Interferente Pequeño/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
4.
Cancer Res ; 81(21): 5451-5463, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462275

RESUMEN

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene PUMA/BBC3. Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines. Modulating SNAI2 levels in rhabdomyosarcoma cells through its overexpression or knockdown altered radiosensitivity in vitro and in vivo. SNAI2 expression reliably promoted overall cell growth and inhibited mitochondrial apoptosis following exposure to IR, with either variable or minimal effects on differentiation and senescence, respectively. Importantly, SNAI2 knockdown increased expression of the proapoptotic BH3-only gene BIM, and chromatin immunoprecipitation sequencing experiments established that SNAI2 is a direct repressor of BIM/BCL2L11. Because the p53 pathway is nonfunctional in the rhabdomyosarcoma cells used in this study, we have identified a new, p53-independent SNAI2/BIM signaling axis that could potentially predict clinical responses to IR treatment and be exploited to improve rhabdomyosarcoma therapy. SIGNIFICANCE: SNAI2 is identified as a major regulator of radiation-induced apoptosis in rhabdomyosarcoma through previously unknown mechanisms independent of p53.


Asunto(s)
Proteína 11 Similar a Bcl2/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Radiación Ionizante , Rabdomiosarcoma/prevención & control , Factores de Transcripción de la Familia Snail/metabolismo , Animales , Apoptosis , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , RNA-Seq , Rabdomiosarcoma/etiología , Rabdomiosarcoma/patología , Factores de Transcripción de la Familia Snail/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Periodontol ; 86(5): 703-12, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25594425

RESUMEN

BACKGROUND: A fundamental issue limiting the efficacy of surgical approaches designed to correct periodontal mucogingival defects is that new tissues rely on limited sources of blood supply from the adjacent recipient bed. Accordingly, therapies based on tissue engineering that leverage local self-healing potential may represent promising alternatives for the treatment of mucogingival defects by inducing local vascularization. The aim of this study is to evaluate the effect of commercially available living cellular sheets (LCS) on the angiogenic potential of neonatal dermal human microvascular endothelial cells (HMVEC-dNeo). METHODS: The effect of LCS on HMVEC-dNeo proliferation, migration, capillary tube formation, gene expression, and production of angiogenic factors was evaluated over time. RESULTS: LCS positively influenced HMVEC-dNeo proliferation and migration. Moreover, HMVEC-dNeo incubated with LCS showed transcriptional profiles different from those of untreated cells. Whereas increased expression of angiogenic genes predominated early on in response to LCS, late-phase responses were characterized by up- and downregulation of angiostatic and angiogenic genes. However, this trend was not confirmed at the protein level, as LCS induced increased production of most of the angiogenic factors tested (i.e., epidermal growth factor [EGF], heparin-binding EGF-like growth factor, interleukin 6, angiopoietin, platelet-derived growth factor-BB, placental growth factor, and vascular endothelial growth factor) throughout the investigational period. Finally, although LCS induced HMVEC-dNeo proliferation, migration, and expression of angiogenic factors, additional factors and environmental pressures are likely to be required to promote the development of complex, mesh-like vascular structures. CONCLUSION: LCS favor initial mechanisms that govern angiogenesis but failed to enhance or accelerate HMVEC-dNeo morphologic transition to complex vascular structures.


Asunto(s)
Células Endoteliales/fisiología , Endotelio Vascular/citología , Microvasos/citología , Neovascularización Fisiológica/fisiología , Andamios del Tejido , Inductores de la Angiogénesis/análisis , Angiopoyetinas/análisis , Becaplermina , Capilares/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Colágeno Tipo I/química , Factor de Crecimiento Epidérmico/análisis , Fibroblastos/fisiología , Regulación de la Expresión Génica/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/análisis , Humanos , Interleucina-6/análisis , Queratinocitos/fisiología , Neovascularización Fisiológica/genética , Factor de Crecimiento Placentario , Proteínas Gestacionales/análisis , Proteínas Proto-Oncogénicas c-sis/análisis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/análisis
6.
J Periodontol ; 84(5): 634-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22934840

RESUMEN

BACKGROUND: It has been suggested that cyclosporine A (CsA) induces gingival enlargement by promoting an increase in the gingival extracellular matrix (ECM). Nonetheless, the variable occurrence of CsA-induced gingival enlargement in patients receiving this medication indicates a multifactorial pathogenesis. Clinical observations suggest that local inflammation is associated with the development and severity of CsA-induced gingival enlargement. Therefore, the purpose of this study is to investigate the effects of CsA and inflammation on the production of ECM homeostatic mediators. METHODS: The effects of CsA and inflammation (as assessed using interleukin [IL]-1ß) on the secretion of mediators involved in ECM homeostasis were determined using fibroblast monolayers and three-dimensional (3D) models of the human oral mucosa. Fibroblast monolayers and 3D cultures were treated with CsA alone or in combination with IL-1ß for up to 72 hours, and the secretion of matrix metalloproteinases (MMPs) 1, 2, 3, 8, 9, 10, and 13 and tissue inhibitors of MMPs (TIMPs) 1, 2, and 4 into the culture medium was assessed using enzyme-linked immunoassay-based antibody arrays. RESULTS: Fibroblast monolayers responded to CsA with no changes in the secretion of ECM mediators. Conversely, 3D cultures responded to CsA treatment with a reduction in MMP-10 secretion. IL-1ß alone triggered higher secretory levels of MMPs in both fibroblast monolayers (MMP-3 and MMP-10) and 3D cultures (MMP-9 and MMP-10). Importantly, fibroblast monolayers and 3D cultures treated with a combination of IL-1ß and CsA showed a decrease in the MMP-1/TIMP-1 ratio. CONCLUSIONS: These data support the hypothesis that inflammation may alter the pathogenesis of CsA-induced gingival enlargement by promoting a synergistic decrease in the MMP-1/TIMP-1 ratio.


Asunto(s)
Sobrecrecimiento Gingival/inducido químicamente , Sobrecrecimiento Gingival/enzimología , Inflamación/complicaciones , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Mucosa Bucal/enzimología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Análisis de Varianza , Células Cultivadas , Ciclosporina/efectos adversos , Proteínas de la Matriz Extracelular/metabolismo , Encía/citología , Encía/metabolismo , Sobrecrecimiento Gingival/etiología , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Anatómicos , Mucosa Bucal/citología , Proyectos Piloto , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA