Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563294

RESUMEN

Coxsackievirus A6 (CV-A6) is an emerging pathogen associated with hand, foot, and mouth disease (HFMD). Its genetic characterization and pathogenic properties are largely unknown. Here, we report 39 circulating CV-A6 strains isolated in 2013 from HFMD patients in northeast China. Three major clusters of CV-A6 were identified and related to CV-A6, mostly from Shanghai, indicating that domestic CV-A6 strains were responsible for HFMD emerging in northeast China. Four full-length CV-A6 genomes representing each cluster were sequenced and analyzed further. Bootscanning tests indicated that all four CV-A6-Changchun strains were most likely recombinants between the CV-A6 prototype Gdula and prototype CV-A4 or CV-A4-related viruses, while the recombination pattern was related to, yet distinct from, the strains isolated from other regions of China. Furthermore, different CV-A6 strains showed different capabilities of viral replication, release, and pathogenesis in a mouse model. Further analyses indicated that viral protein 2C contributed to the diverse pathogenic abilities of CV-A6 by causing autophagy and inducing cell death. To our knowledge, this study is the first to report lethal and nonlethal strains of CV-A6 associated with HFMD. The 2C protein region may play a key role in the pathogenicity of CV-A6 strains.IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major and persistent threat to infants and children. Besides the most common pathogens, such as enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), other enteroviruses are increasingly contributing to HFMD. The present study focused on the recently emerged CV-A6 strain. We found that CV-A6 strains isolated in Changchun City in northeast China were associated with domestic origins. These Changchun viruses were novel recombinants of the CV-A6 prototype Gdula and CV-A4. Our results imply that measures to control CV-A6 transmission are urgently needed. Further analyses revealed differing pathogenicities in strains isolated in a neonatal mouse model. One of the possible causes has been narrowed down to the viral protein 2C, using phylogenetic studies, viral sequences, and direct tests on cultured human cells. Thus, the viral 2C protein is a promising target for antiviral drugs to prevent CV-A6-induced tissue damage.


Asunto(s)
Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Enfermedad de Boca, Mano y Pie/virología , Virus Reordenados/genética , Recombinación Genética/genética , Animales , Línea Celular Tumoral , China , Modelos Animales de Enfermedad , Brotes de Enfermedades , Enterovirus Humano A/aislamiento & purificación , Enfermedad de Boca, Mano y Pie/patología , Humanos , Ratones , Ratones Endogámicos ICR , Filogenia , Virus Reordenados/patogenicidad
2.
J Mater Chem B ; 10(28): 5454-5464, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35786741

RESUMEN

The SARS-CoV-2 pandemic has become a severe global public health event, and the development of protective and therapeutic strategies is urgently needed. Downregulation of angiotensin converting enzyme 2 (ACE2; one of the important SARS-CoV-2 entry receptors) and aberrant inflammatory responses (cytokine storm) are the main targets to inhibit and control COVID-19 invasion. Silver nanomaterials have well-known pharmaceutical properties, including antiviral, antibacterial, and anticancer properties. Here, based on a self-established metal evaporation-condensation-size graded collection system, smaller silver particles reaching the Ångstrom scale (AgÅPs) were fabricated and coated with fructose to obtain a stabilized AgÅP solution (F-AgÅPs). F-AgÅPs potently inactivated SARS-CoV-2 and prevented viral infection. Considering the application of anti-SARS-CoV-2, a sterilized F-AgÅP solution was produced via spray formulation. In our model, the F-AgÅP spray downregulated ACE2 expression and attenuated proinflammatory factors. Moreover, F-AgÅPs were found to be rapidly eliminated to avoid respiratory and systemic toxicity in this study as well as our previous studies. This work presents a safe and potent anti-SARS-CoV-2 agent using an F-AgÅP spray.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Plata/farmacología
3.
Acta Biochim Biophys Sin (Shanghai) ; 37(9): 613-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16143816

RESUMEN

Acylpeptide hydrolase (APH) catalyzes the N-terminal hydrolysis of Nalpha-acylpeptides to release Nalpha-acylated amino acids. The crystal structure of recombinant APH from the thermophilic archaeon Aeropyrum pernix K1 (apAPH) was reported recently to be at a resolution of 2.1 Angstrom; using X-ray diffraction. A truncated mutant of apAPH that lacks the first short alpha-helix at the N-terminal, apAPH-delta(1-21), was cloned, expressed, characterized and crystallized. Data from biochemical experiments indicate that the optimum temperature of apAPH is decreased by 15 degrees C with the deletion of the N-terminal alpha-helix. However, the enzyme activity at the optimal temperature does not change. It suggests that this N-terminal alpha-helix is essential for thermostability. Here, the crystal structure of apAPH-delta(1-21) has been determined by molecular replacement to 2.5 Angstrom;. A comparison between the two structures suggests a difference in thermostability, and it can be concluded that by adding or deleting a linking structure (located over different domains), the stability or even the activity of an enzyme can be modified.


Asunto(s)
Aeropyrum/enzimología , Péptido Hidrolasas/química , Péptido Hidrolasas/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Calor , Modelos Moleculares , Péptido Hidrolasas/biosíntesis , Conformación Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA