Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34016749

RESUMEN

Worldwide cardiovascular diseases such as stroke and heart disease are the leading cause of mortality. While guidewire/catheter-based minimally invasive surgery is used to treat a variety of cardiovascular disorders, existing passive guidewires and catheters suffer from several limitations such as low steerability and vessel access through complex geometry of vasculatures and imaging-related accumulation of radiation to both patients and operating surgeons. To address these limitations, magnetic soft continuum robots (MSCRs) in the form of magnetic field-controllable elastomeric fibers have recently demonstrated enhanced steerability under remotely applied magnetic fields. While the steerability of an MSCR largely relies on its workspace-the set of attainable points by its end effector-existing MSCRs based on embedding permanent magnets or uniformly dispersing magnetic particles in polymer matrices still cannot give optimal workspaces. The design and optimization of MSCRs have been challenging because of the lack of efficient tools. Here, we report a systematic set of model-based evolutionary design, fabrication, and experimental validation of an MSCR with a counterintuitive nonuniform distribution of magnetic particles to achieve an unprecedented workspace. The proposed MSCR design is enabled by integrating a theoretical model and the genetic algorithm. The current work not only achieves the optimal workspace for MSCRs but also provides a powerful tool for the efficient design and optimization of future magnetic soft robots and actuators.

2.
Soft Matter ; 18(31): 5742-5749, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792010

RESUMEN

Soft yet tough materials are ubiquitous in nature and everyday life. The ratio between fracture toughness and intrinsic fracture energy of a soft material defines its toughness enhancement. Soft materials' toughness enhancement has been long attributed to their bulk stress-stretch hysteresis induced by dissipation mechanisms such as Mullins effect and viscoelasticity. With a combination of experiments and theory, here we show that the bulk dissipation mechanisms significantly underestimate the toughness enhancement of soft tough materials. We propose a new mechanism and scaling law to account for extreme toughening of diverse soft materials. We show that the toughness enhancement of soft materials relies on both bulk hysteretic dissipation, and near-crack dissipation due to mechanisms such as polymer-chain entanglement. Unlike the bulk hysteretic dissipation, the near-crack dissipation does not necessarily induce large stress-stretch hysteresis of the bulk material. The extreme toughening mechanism can be potentially universally applied to various soft tough materials, ranging from double-network hydrogels, interpenetrating-network hydrogels, entangled-network hydrogels and slide-ring hydrogels, to unfilled and filled rubbers.

3.
Science ; 380(6651): 1252-1257, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37347869

RESUMEN

The hinge of bivalve shells can sustain hundreds of thousands of repeating opening-and-closing valve motions throughout their lifetime. We studied the hierarchical design of the mineralized tissue in the hinge of the bivalve Cristaria plicata, which endows the tissue with deformability and fatigue resistance and consequently underlies the repeating motion capability. This folding fan-shaped tissue consists of radially aligned, brittle aragonite nanowires embedded in a resilient matrix and can translate external radial loads to circumferential deformation. The hard-soft complex microstructure can suppress stress concentration within the tissue. Coherent nanotwin boundaries along the longitudinal direction of the nanowires increase their resistance to bending fracture. The unusual biomineral, which exploits the inherent properties of each component through multiscale structural design, provides insights into the evolution of antifatigue structural materials.


Asunto(s)
Materiales Biocompatibles , Bivalvos , Animales , Biomineralización
4.
ACS Appl Mater Interfaces ; 13(29): 34942-34953, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270204

RESUMEN

Hydrogel-based electronics have received growing attention because of their great flexibility and stretchability. However, the fabrication of conductive hydrogels with high stretchability, excellent toughness, outstanding sensitivity, and low-temperature stability still remains a great challenge. In this study, a type of conductive hydrogels consisting of a double network (DN) structure is synthesized. The dynamically cross-linked chitosan (CS) and the flexible polyacrylamide network doped with polyaniline constitute the DN through the hydrogen bonds between the hydroxyl, amide, and aniline groups. This type of hydrogels displays excellent mechanical performance, striking conductivity, and remarkable freezing tolerance. The flexible electronic sensors based on the double-network hydrogels demonstrate superior strain sensitivity and linear response on various deformations. Additionally, the good antifreezing property of the hydrogels allows the sensors to exhibit excellent performance at -20 °C.

5.
iScience ; 23(10): 101576, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083742

RESUMEN

Lithium-sulfur batteries are paid much attention owing to their high specific capacity and energy density. However, their practical applications are impeded by poor electrochemical performance due to the dissolved polysulfides. The concentration of soluble polysulfides has a linear relationship with the internal heat generation. The issue of heat transport inside lithium-sulfur batteries is often overlooked. Here, we designed a functional separator that not only had a high thermal conductivity of 0.65 W m-1 K-1 but also alleviated the diffusion of dissolved active materials to the lithium anode, improving the electrochemical performance and safety issue. Lithium-sulfur batteries with the functional separator have a specific capacity of 1,126.4 mAh g-1 at 0.2 C, and the specific capacity can be remained up to 893.5 mAh g-1 after 100 cycles. Pouch Cells with high sulfur loading also showed a good electrochemical performance under a lean electrolyte condition of electrolyte/sulfur (E/S) = 3 µL mg-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA