Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 14(24): e1800691, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29766647

RESUMEN

Graphene is characterized by demonstrated unique properties for potential novel applications in photodetection operated in the frequency range from ultraviolet to terahertz. To date, detailed work on identifying the origin of photoresponse in graphene is still ongoing. Here, scanning photocurrent microscopy to explore the nature of photocurrent generated at the monolayer-multilayer graphene junction is employed. It is found that the contributing photocurrent mechanism relies on the mismatch of the Dirac points between the monolayer and multilayer graphene. For overlapping Dirac points, only photothermoelectric effect (PTE) is observed at the junction. When they do not coincide, a different photocurrent due to photovoltaic effect (PVE) appears and becomes more pronounced with larger separation of the Dirac points. While only PTE is reported for a monolayer-bilayer graphene junction in the literature, this work confirms the coexistence of PTE and PVE, thereby extending the understanding of photocurrent in graphene-based heterojunctions.

2.
Nanoscale Res Lett ; 13(1): 4, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29318402

RESUMEN

Atomic-layer-deposition (ALD) of In2O3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H2O2) as precursors. The In2O3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (Eg) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In2O3, and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In2O3 thin-film transistors with an Al2O3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm2/V⋅s, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 107. This was ascribed to passivation of oxygen vacancies in the device channel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA