Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 20(34): 6800-6807, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39148339

RESUMEN

A flexible, tough, highly transparent and piezoelectric polyacrylamide hydrogel was fabricated induced by blue light photocuring, with camphorquinone/diphenyliodonium hexafluorophosphate (CQ/DPI) as the blue light initiator, acrylamide (AM) and N,N-dimethylacrylamide (DMAA) as monomers, polyethylene glycol diacrylate (PEGDA) as the crosslinker, lecithin as the dispersant, and BaTiO3 as the piezoelectric material. Various performance tests were carried out on the hydrogel, and the results showed that lecithin enhances the dispersion of BaTiO3 within the system and improves the tensile properties (>100% strain) of the hydrogel, and the addition of PEGDA not only improves the photopolymerization performance of the hydrogel, but also significantly improves its fracture strength (∼0.3 MPa). In addition, BaTiO3 enables the resultant hydrogels to show excellent conductivity (>1.5) and stable response to strain. The assembled hydrogel sensor shows a sensitive response to human joint activities, which is expected to be applied in self-powered sensors and energy collection.

2.
ACS Omega ; 6(51): 35600-35606, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984291

RESUMEN

A self-lubricating hydrogel filament was achieved by establishing an in situ photocuring system and using camphorquinone/diphenyl iodonium hexafluorophosphate (CQ/DPI) as the blue-light photoinitiators, acrylamide (AM) and N,N-dimethylacrylamide (DMAA) as the monomers, polyethylene glycol diacrylate (PEGDA) as the cross-linker, and lecithin as the lipid lubricant. The blue-light photopolymerization efficiency and the photorheological properties of the hydrogel precursor were investigated by photodifferential scanning calorimetry and a photorheological system. With the increase of DMAA, the photopolymerization efficiency of the precursor improved, while the elasticity of poly(DMAA/AM) decreased accordingly. The physical cross-linking effect between lecithin and the poly(DMAA/AM) network led to improved polymerization properties and elasticity. The lipid-based boundary layer at the hydrogel surface endowed the self-lubrication of the hydrogel filament. The extruded hydrogel filaments exhibited excellent mechanical properties and weavability, which were expected to play a realistic role in soft robots and bioengineering.

3.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34833274

RESUMEN

Herein, a polyurethane acrylate-based TiO2 (PU-TiO2) was fabricated using a two-step method. First, a polyurethane prepolymer was prepared. Second, PU-TiO2 was prepared using amino-modified TiO2 (A-TiO2). The best synthesis process of the polyurethane prepolymer was when the reaction temperature was 80 °C, the reaction time was 3 h and the R-value of the polyurethane acrylate was 2. Next, the influence of the A-TiO2 content on the structure and performance of PU-TiO2 was examined. The analysis of the rheological properties of the PU-TiO2 ink indicated that its viscosity gradually increased as the A-TiO2 content increased. The tensile performance of film improved because of the presence of A-TiO2. The photo-polymerisation and photo-rheological performance indicated that the PU-TiO2 structure changed from a hyperbranched structure with TiO2 as the core to a segmented structure, as the A-TiO2 content was 3%.

4.
ACS Appl Mater Interfaces ; 13(23): 27635-27644, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34060802

RESUMEN

Membrane fouling is a major challenge for long-term oil/water separation. The incomplete degradation of organic pollutants or membrane damage exists in the common methods of membrane regeneration. Herein, a dual-responsive nanofibrous membrane with high water-in-oil emulsion separation efficiency and smart cleaning properties is reported, which shows complete restoration of its original separation performance. The pH-responsive and upper critical solution temperature (UCST)-type thermoresponsive nanofibrous membrane with a micro/nanosphere structure was developed via a one-step-blending electrospinning strategy. The membrane displays high hydrophobicity/oleophilicity at pH 7 and 25 °C and hydrophilicity/oleophobicity at pH 3 and 55 °C. As a result, it exhibits an ultrahigh permeability of 60528.76 L m-2 h-1 bar-1 and a separation efficiency of 99.5% for water-in-D5 emulsions at room temperature (25 °C). Moreover, the contaminated membranes could be easily reclaimed by being rinsed with warm acidic water (pH 3 and 55 °C). The membrane maintained high separation performance after being used for multiple cycles, indicating its scalable application for purifying emulsified oil. This study provides a facial method of constructing membranes with multiscale hierarchical structures and a new idea for the design of recyclable oil/water separation membranes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA