Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemistry ; 30(14): e202303781, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38196025

RESUMEN

Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.

2.
Inorg Chem ; 63(40): 18574-18580, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39303073

RESUMEN

As a representative of zeolitic imidazolate framework glass, agZIF-62 has been reported to be synthesized using a melt-quenching method in which the ZIF-62 crystal is heated to a temperature above the melting point. Interestingly, we unexpectedly found that agZIF-62 can also be synthesized by simple heating at temperatures lower than the melting point, which may be assisted by the release of encapsulated solvent molecules. The structural differences between melt-quenched agZIF-62 (MQ-agZIF-62) and heat-cooled agZIF-62 (HC-agZIF-62) were investigated. The results indicated that MQ-agZIF-62 is closer to the liquid state, while HC-agZIF-62 is closer to the crystal state. Interestingly, their luminescent emissions exhibit significant differences. Compared with the ZIF-62 crystal, MQ-agZIF-62 showed a blue-shift of 14 nm, whereas HC-agZIF-62 showed a red-shift of 9 nm. The emission intensity of agZIF-62 is also significantly stronger than that of ZIF-62; thus, rapid semiquantitative detection of the content of the MOF glass in glass and crystal mixtures can be achieved. In addition, HC-agZIF-62 and MQ-agZIF-62 can transform into ZIF-62 crystals via a solvent-media mechanism. This study provides new insights into ZIF-62 glass.

3.
Inorg Chem ; 63(9): 4185-4195, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364251

RESUMEN

Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.

4.
Angew Chem Int Ed Engl ; : e202413171, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193661

RESUMEN

Exploring self-standing chiral covalent organic framework (CCOF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains challenging. Herein, we demonstrate the first example of self-standing CCOF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality CCOF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of 4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films.

5.
Angew Chem Int Ed Engl ; 62(4): e202216310, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36445778

RESUMEN

Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures. We have further demonstrated that the helical chirality and circular dichroism signal can be facilely inversed by simply adjusting the amount of acetic acid during synthesis. Moreover, by transferring chirality to achiral fluorescent molecular adsorbents, the helical COF nanostructures can effectively induce circularly polarized luminescence with the highest luminescent asymmetric factor (glum ) up to ≈0.01.

6.
Inorg Chem ; 61(43): 16981-16985, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36251482

RESUMEN

Metal-organic framework (MOF) glass is a new type of glass material, but it usually lacks sufficient porosity. Thus, regulating the pore structure of MOF glass to improve its adsorption performance is very important. Herein, we found that the porosity of MOF glasses agZIF-62 and agZIF-76 can be regulated via an ammonia-immersion approach. After ammonia immersion, the resulting agZIF-62-NH3 and agZIF-76-NH3 could be maintained in their glass states or converted to their amorphous states, respectively. Their porosity changed according to the gas adsorption experiments. Notably, compared with agZIF-62 and agZIF-76, the iodine uptake capacities for agZIF-62-NH3 and agZIF-76NH3 increased by 12 and 21 times, respectively. This work shows that the subsequent treatment of MOF glass can regulate their adsorption performance.

7.
J Mol Recognit ; 32(5): e2772, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30520537

RESUMEN

In this paper, a miRNA-based quartz crystal microbalance (QCM) biosensor was fabricated and used to the rapid and effective sensing of miRNA. The specific hybridization between probe miRNA and different selected miRNAs (miR-27a, miR-27b, and Let-7a) cause a different interaction mode, thus display different frequency change and response patterns in the QCM sensor, which were used to detect miR-27a and miR-27b. The selective sensing of miR-27a in mixed miRNA solution was also achieved. This miRNA-based QCM biosensor has the advantages of real-time, label-free, and short cycle detection.


Asunto(s)
Técnicas Biosensibles/métodos , MicroARNs/análisis , MicroARNs/química , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Electrodos , Humanos , Límite de Detección , MicroARNs/metabolismo
8.
Inorg Chem ; 58(21): 14660-14666, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31609588

RESUMEN

A pair of homochiral coordination polymers, [Cu(DPT)]n (1M and 1P, HDPT = 3,5-di-4-pyridinyl-2H-tetrazole), were assembled from achiral precursors. Crystal structure analysis showed that they are chiral three-dimensional (3D) coordination polymers based on a new double-stranded helical building block that is composed of two different 1D helices. Interestingly, rare symmetry-breaking crystallization was observed, in which the possibility of obtaining enantio-enriched bulk product with excessive M enantiomers (1-A) was obviously higher than that for P enantiomers (1-B) as demonstrated in multiple, repeated experiments with single-crystal diffraction and vibrational circular dichroism (VCD) spectra. Moreover, compound [Cu(DPT)]n shows good chemical stability in water, with pH values ranging from 3 to 13, as well as in many common organic solvents. Photophysical properties, including thermochromic properties and two-photon excited luminescence, were studied, and the potential for applications in temperature sensing was exhibited. In addition, the photocatalytic degradation of methylene blue in water indicated that compound [Cu(DPT)]n can be used as a photocatalyst.

9.
Inorg Chem ; 58(4): 2899-2909, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30721040

RESUMEN

Cationic framework materials capable of removing anionic pollutants from wastewater are highly desirable but relatively rarely reported. Herein, a cationic MOF (SCNU-Z1-Cl) possessing tubular channels with diameter of 1.5 nm based on Ni(II) and a nitrogen-containing ligand has been synthesized and applied to capture hazardous anionic contaminants from water. The SCNU-Z1-Cl exhibits high BET surface area of 1636 m2/g, and shows high hydrolytically stability in pH range from 4 to 10. Owing to the large tubular channels and the uncoordinated anions in the framework, the aqueous-phase anion-exchange applications of SCNU-Z1-Cl were explored with environmentally toxic oxo-anions including CrO42-, Cr2O72-, MnO4-, and ReO4-, and organic dyes. The adsorption of oxoanions exhibits high uptake kinetics and the adsorption capacities of CrO42-, Cr2O72-, MnO4-, and ReO4- are 126, 241, 292, and 318 mg/g, respectively, which were some of the highest values in the field of MOF/COF. In additional, the selectively is high when other concurrent anions are exist. The anionic dyes with different sizes including methyl orange, acid orange A, congo red, as well as methyl blue can be adsorbed by SCNU-Z1-Cl in few minutes to about 1 h. The adsorption capacities for them are 285, 180, 585, and 262 mg/g, respectively. In contrast, the adsorption kinetics for catinionic dyes with different sizes is obviously lower and exhibit a size-selectively adsorption that only cationic dye with suitable size (rhodamine B) can be adsorbed by SCNU-Z1-Cl. Consequently, SCNU-Z1-Cl can sepearate organic dyes in three different modes: size-dependent, charge-dependent, and kinetics-dependent selective adsorption. The excellent adsorption and separation properties of SCNU-Z1-Cl is attribute to the cationic framework, large tubular channel, as well as the high positive Zeta potential.

10.
Inorg Chem ; 58(20): 13979-13987, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31583885

RESUMEN

A metal-organic framework (MOF), named SCNU-Z2, based on a new heterotopic tripodal nitrogen-containing ligand, has been constructed. Due to the replacement of one imidazole group in the reported ligand with one tetrazole group, the charge of the framework is changed from cationic to anionic but retains the same framework structure. The framework consists of tubular channels with a diameter of 1.5 nm and exhibits satisfactory stability in water with a pH range of 3-11. The anionic nature of the framework allows the effective adsorption of the cationic dyes MLB, CV, and RhB with capacities of 455.6, 847.4, and 751.8 mg/g, respectively. Among them, the adsorption capacities for SCNU-Z2 on CV and RhB rank as the highest when compared with other reported MOFs. In contrast, SCNU-Z2 exhibits an extremely low capacity for anionic dyes MO and AO, making it useful for the separation of anionic and cationic dyes based on a charge-dependent mode. Interestingly, SCNU-Z2 can be used to degrade an anionic dye, MB, within 30 min under darkness at room temperature. The apparent activation energy of the dye degradation reaction is calculated to be approximately 18.96 kJ·mol-1, implying that the catalytic reaction of MB can be considered as a low-temperature thermocatalytic reaction in the dark/SCNU-Z2 system.

11.
Chimia (Aarau) ; 69(11): 670-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26671051

RESUMEN

A tetradentate symmetric ligand bearing both coordination and hydrogen bonding sites, N(1),N(3)-bis(1-(1H-benzimidazol-2-yl)-ethylidene)propane-1,3-diamine (H2bbepd) was utilized to synthesize a series of transition metal complexes, namely [Co(H2bbepd)(H(2)O)2]·2ClO(4) (1), [Cu(H2bbepd)(OTs(-))]·OTs(-) (2),[Cu(bbepd)(CH(3)OH)] (3), [Cd(H(2)bbepd)(NO3)2]·CH(3)OH (4), [Cd(H(2)bbepd)(CH(3)OH)Cl]·Cl (5), and [Cd(bbepd)(CH(3)OH)2] (6). These complexes show similar discrete pincer-like coordination units, possessing different arrangements of hydrogen bonding donor and acceptor sites. With or without the aid of uncoordinated anions and solvent molecules, such mononuclear units have been effectively involved in the construction of hierarchical hydrogen bonding assemblies (successively via level I and level II), leading to discrete binuclear ring (complex 2), one-dimensional chain or ribbon (complexes 3, 4 and 6) and two-dimensional layer (complexes 1 and 5) aggregates.


Asunto(s)
Enlace de Hidrógeno , Cadmio/química , Cobre/química , Cristalografía por Rayos X
12.
J Sep Sci ; 37(5): 488-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24376089

RESUMEN

Two new polysaccharide-derived chiral selectors, namely, 6-azido-6-deoxy-3,5-dimethylphenylcarbamoylated amylose and 6-azido-6-deoxy-3,5-dimethylphenyl carbamoylated cellulose, were synthesized under homogeneous conditions and immobilized onto aminized silica gel by the Staudinger reaction, resulting in two new immobilized polysaccharide chiral stationary phases (CSPs). Their enantioseparation performances were investigated under normal-phase mode by HPLC. Among 17 analytes, baseline separations of 12 pairs of enantiomers are achieved on the immobilized cellulose CSP, which demonstrates that this new cellulose material exhibits almost the same enantioseparation performance as the coated cellulose CSP. In addition, the amylose-derived CSP presents limited enantiorecognition ability but certain complementarity with the immobilized and coated cellulose-based materials. Neither metolachlor nor paclitaxel side chain acids are separated on two cellulose-derived CSPs, but effective separations are obtained on the immobilized amylose column.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Fenilcarbamatos/química , Polímeros/química , Polisacáridos/química , Polímeros/síntesis química , Polisacáridos/síntesis química , Estereoisomerismo
13.
Chem Commun (Camb) ; 60(75): 10362-10365, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39212618

RESUMEN

A strategy for constructing binary metal-organic cage (MOC)-based materials was developed. The cationic MOCs were covalently linked by organic linkers to a cationic extended network, whereas the anionic MOCs acted as counterions and were encapsulated in the network. Compared with the corresponding unary materials, the binary MOC-based materials exhibited improved porosity and adsorption performance.

14.
J Colloid Interface Sci ; 676: 884-895, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067223

RESUMEN

Developing high active and stable cost-effective bifunctional electrocatalysts for overall water splitting to produce hydrogen is of vital significance in clean and sustainable energy development. This work has prepared a novel porous unreported MOF (Ni-DPT) as a precursor to successfully synthesize a non-noble bifunctional NiCoP/Ni12P5@NF electrocatalyst through doping strategy and interface engineering. This catalyst is constructed by layered self-supporting arrays with heterojunction interface and rich nitrogen-phosphorus doping. Structural characterizations and the density function theory (DFT) calculations confirm that the interface effect of NiCoP/Ni12P5 heterojunction can regulate the electronic structure of the catalyst to optimize the Gibbs free energy of hydrogen (ΔGH*); simultaneously, the defect-rich layered nanoarrays can expose more active sites, shorten mass transfer distance, and generate a self-supporting structure for in-situ reinforcing the structural stability. As a result, this NiCoP/Ni12P5@NF catalyst exhibits favorable electrocatalytic performance, which simply needs overpotentials of 100 mV for HER and 310 mV for OER, respectively, at a current density of 10 mA·cm-2. The anion exchange membrane electrolyzer assembled with this NiCoP/Ni12P5@NF as both anode and cathode catalysts can operate stably for 200 h at a current density of 100 mA·cm-2 with an insignificant voltage decrease. This work may provide some inspiration for the further rational design of inexpensive non-noble multifunctional electrocatalysts and electrode materials for water splitting to generate hydrogen.

15.
Chem Asian J ; : e202400753, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136386

RESUMEN

The design and synthesis of chiral covalent organic frameworks (COFs) with controlled defect sites are highly desirable but still remain largely unexplored. Herein, we report the synthesis of a defective chiral HD-TAPB-DMTP COF by modifying the chiral monomer helicid (HD) into the framework of an achiral imine-linked TAPB-DMTP COF using a chiral monomer exchange strategy. Upon the introduction of the chiral HD unit, the obtained defective chiral HD-TAPB-DMTP COF not only displays excellent crystallinity, large specific surface area (up to 2338 m2/g) and rich accessible chiral functional sites but also exhibits fluorescence emission, rendering it a good candidate for discrimination of amino acids. Notably, the resultant defective chiral HD-TAPB-DMTP COF can be used as a fluorescent sensor for enantioselective recognition of both tyrosine and phenylalanine enantiomers in water, showing enhanced fluorescent responses for the L conformations over those of the D conformations with enantioselectivity factors being 1.84 and 2.02, respectively. Moreover, molecular docking simulations uncover that stronger binding affinities between chiral HD-TAPB-DMTP COF and L-tyrosine/L-phenylalanine in comparison to those with D-tyrosine/D-phenylalanine play important roles in enantioselective determination. This work provides new insights into the design and construction of highly porous defective chiral COFs for enantioselective fluorescence recognition of amino acids.

16.
Chem Commun (Camb) ; 60(48): 6190-6193, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805194

RESUMEN

For the first time, hierarchical porous amorphous metal-organic frameworks (HP-aMOFs) containing ultramicropores, micropores, and mesopores were synthesized by etching a composite of MOF glass (agZIF-76) and ZnO using ammonia. These materials show potential applications in the adsorption of C2 hydrocarbons.

17.
ACS Appl Mater Interfaces ; 16(8): 10661-10670, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38377517

RESUMEN

Chiral covalent organic frameworks (COFs) hold considerable promise in the realm of heterogeneous asymmetric catalysis. However, fine-tuning the pore environment to enhance both the activity and stereoselectivity of chiral COFs in such applications remains a formidable challenge. In this study, we have successfully designed and synthesized a series of clover-shaped, hydrazone-linked chiral COFs, each with a varying number of accessible chiral pyrrolidine catalytic sites. Remarkably, the catalytic efficiencies of these COFs in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde correlate well with the number of accessible pyrrolidine sites within the frameworks. The COF featuring nearly one pyrrolidine moiety at each nodal point demonstrated excellent reaction yields and enantiomeric excess (ee) values, reaching up to 97 and 83%, respectively. The findings not only underscore the profound impact of a deliberately controlled chiral pore environment on the catalytic efficiencies of COFs but also offer a new perspective for the design and synthesis of advanced chiral COFs for efficient asymmetric catalysis.

18.
Chirality ; 25(9): 487-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913549

RESUMEN

Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA-CSP) by high-performance liquid chromatography (HPLC) in reversed-phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N-(2, 4-dinitrophenyl)-serine (DNP-ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (R(s)) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N-(2, 4-dinitrophenyl)-proline (DNP-pro) decrease along with increasing 1-propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods.


Asunto(s)
Cromatografía Líquida de Alta Presión/normas , Albúmina Sérica Bovina/química , Animales , Benzoína/análisis , Benzoína/química , Bovinos , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/normas , Cromatografía Líquida de Alta Presión/instrumentación , Ácidos Mandélicos/análisis , Ácidos Mandélicos/química , Estructura Molecular , Estereoisomerismo , Termodinámica
19.
J Sep Sci ; 36(8): 1343-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23509012

RESUMEN

N-(2,4-dinitrophenyl)-proline and N-(2,4-dinitrophenyl)-serine were enantiomerically resolved on the BSA chiral stationary phase by HPLC in reversed-phase mode. Effects of chromatographic conditions on enantioseparation and elution order have been investigated in detail. For these two samples, reversal of enantiomer elution order was observed by changing buffer pH, the content of acetonitrile, or alcohol modifiers in mobile phase, which is firstly reported in the BSA chiral stationary phase studies. More interestingly, combined effect between buffer pH and the content of acetonitrile was also observed. In addition, coelution range of enantiomers varied along with the content of acetonitrile in mobile phase.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Prolina/análogos & derivados , Serina/análogos & derivados , Albúmina Sérica Bovina/química , Concentración de Iones de Hidrógeno , Prolina/aislamiento & purificación , Serina/aislamiento & purificación , Estereoisomerismo
20.
Dalton Trans ; 52(22): 7709-7717, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37204248

RESUMEN

Mixed-ligand metal-organic frameworks (MOFs) are usually synthesized from two or more organic ligands as initial reactants, and MOFs synthesized from one organic ligand precursor through partial in situ reactions remain very limited. Herein, by introducing an imidazole-tetrazole bifunctional ligand, 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HIPT), as a single ligand and performing in situ hydrolysis of the tetrazolium group, a mixed-ligand Co(II)-MOF based on HIPT and 4-imidazol-1-yl-benzoic acid (HIBA), [Co2(µ3-O)(IPT)(IBA)]·x solvent (Co-IPT-IBA), was constructed and applied to capture I2 and methyl iodide vapours. Single crystal structural analyses reveal that Co-IPT-IBA exhibits a 3D porous framework with 1D channels based on the relatively few reported ribbon-like rod SBUs. The nitrogen adsorption-desorption isotherms indicate that the BET surface area of Co-IPT-IBA is 168.5 m2 g-1 and it possesses both micropores and mesopores. Due to its porosity, nitrogen-rich conjugated aromatic rings, and Co(II) ions, Co-IPT-IBA was applied to capture iodine molecules in vapour and exhibited an adsorption capacity of 2.88 g g-1. By combining the IR, Raman, XPS and grand canonical Monte Carlo (GCMC) simulation results, it was deduced that the tetrazole ring, coordination water molecules, and the redox potential of Co3+/Co2+ facilitate iodine capture. The presence of mesopores was also responsible for the high iodine adsorption capacity. In addition, Co-IPT-IBA showed the ability to capture methyl iodide in vapours with a moderate capacity of 625 mg g-1. The transformation of crystalline Co-IPT-IBA to amorphous MOFs may be due to the methylation reaction. This work represents a relatively rare example of methyl iodide adsorption by MOFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA