Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0174023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193674

RESUMEN

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Asunto(s)
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo
2.
Biotechnol Bioeng ; 121(5): 1532-1542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265115

RESUMEN

Carbonyl reductases are useful for producing optically active alcohols from their corresponding prochiral ketones. Herein, we applied a computer-assisted strategy to increase the thermostability of a previously constructed carbonyl reductase, LsCRM4 (N101D/A117G/F147L/E145A), which showed an outstanding activity in the synthesis of the ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. The stability changes introduced by mutations at the flexible sites were predicted using the computational tools FoldX, I-Mutant 3.0, and DeepDDG, which demonstrated that 12 virtually screened mutants could be thermally stable; 11 of these mutants exhibited increased thermostability. Then a superior mutant LsCRM4-V99L/D150F was screened out from the library that was constructed by iteratively combining the beneficial sites, which showed a 78% increase in activity and a 17.4°C increase in melting temperature compared to LsCRM4. Our computer-assisted design and combinatorial strategy dramatically increased the efficiency of thermostable enzyme production.


Asunto(s)
Oxidorreductasas de Alcohol , Etanol , Ticagrelor , Estabilidad de Enzimas , Oxidorreductasas de Alcohol/genética , Temperatura , Computadores
3.
Biotechnol Bioeng ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822747

RESUMEN

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin ( l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin ( d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.

4.
Org Biomol Chem ; 22(15): 3009-3018, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529785

RESUMEN

Catalytic activity is undoubtedly a key focus in enzyme engineering. The complicated reaction conditions hinder some enzymes from industrialization even though they have relatively promising activity. This has occurred to some dehydrogenases. Hydroxysteroid dehydrogenases (HSDHs) specifically catalyze the conversion between hydroxyl and keto groups, and hold immense potential in the synthesis of steroid medicines. We underscored the importance of 7α-HSDH activity, and analyzed the overall robustness and underlying mechanisms. Employing a high-throughput screening approach, we comprehensively assessed a mutation library, and obtained a mutant with enhanced enzymatic activity and overall stability/tolerance. The superior mutant (I201M) was identified to harbor improved thermal stability, substrate susceptibility, cofactor affinity, as well as the yield. This mutant displayed a 1.88-fold increase in enzymatic activity, a 1.37-fold improvement in substrate tolerance, and a 1.45-fold increase in thermal stability when compared with the wild type (WT) enzyme. The I201M mutant showed a 2.25-fold increase in the kcat/KM ratio (indicative of a stronger binding affinity for the cofactor). This mutant did not exhibit the highest enzyme activity compared with all the tested mutants, but these improved characteristics contributed synergistically to the highest yield. When a substrate at 100 mM was present, the 24 h yield by I201M reached 89.7%, significantly higher than the 61.2% yield elicited by the WT enzyme. This is the first report revealing enhancement of the catalytic efficiency, cofactor affinity, substrate tolerance, and thermal stability of NAD(H)-dependent 7α-HSDH through a single-point mutation. The mutated enzyme reached the highest enzymatic activity of 7α-HSDH ever reported. High enzymatic activity is undoubtedly crucial for enabling the industrialization of an enzyme. Our findings demonstrated that, when compared with other mutants boasting even higher enzymatic activity, mutants with excellent overall robustness were superior for industrial applications. This principle was exemplified by highly active enzymes such as 7α-HSDH.


Asunto(s)
Hidroxiesteroide Deshidrogenasas , Mutación Puntual , Hidroxiesteroide Deshidrogenasas/genética , Hidroxiesteroide Deshidrogenasas/metabolismo , Mutación , Catálisis , Cinética
5.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709366

RESUMEN

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Dosificación de Gen , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Expresión Génica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
6.
Appl Microbiol Biotechnol ; 108(1): 186, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300290

RESUMEN

Steroid-based drugs are now mainly produced by the microbial transformation of phytosterol, and a two-step bioprocess is adopted to reach high space-time yields, but byproducts are frequently observed during the bioprocessing. In this study, the catabolic switch between the C19- and C22-steroidal subpathways was investigated in resting cells of Mycobacterium neoaurum NRRL B-3805, and a dose-dependent transcriptional response toward the induction of phytosterol with increased concentrations was found in the putative node enzymes including ChoM2, KstD1, OpccR, Sal, and Hsd4A. Aldolase Sal presented a dominant role in the C22 steroidal side-chain cleavage, and the byproduct was eliminated after sequential deletion of opccR and sal. Meanwhile, the molar yield of androst-1,4-diene-3,17-dione (ADD) was increased from 59.4 to 71.3%. With the regard of insufficient activity of rate-limiting enzymes may also cause byproduct accumulation, a chromosomal integration platform for target gene overexpression was established supported by a strong promoter L2 combined with site-specific recombination in the engineered cell. Rate-limiting steps of ADD bioconversion were further characterized and overcome. Overexpression of the kstD1 gene further strengthened the bioconversion from AD to ADD. After subsequential optimization of the bioconversion system, the directed biotransformation route was developed and allowed up to 82.0% molar yield with a space-time yield of 4.22 g·L-1·day-1. The catabolic diversion elements and the genetic overexpression tools as confirmed and developed in present study offer new ideas of M. neoaurum cell factory development for directed biotransformation for C19- and C22-steroidal drug intermediates from phytosterol. KEY POINTS: • Resting cells exhibited a catabolic switch between the C19- and C22-steroidal subpathways. • The C22-steroidal byproduct was eliminated after sequential deletion of opccR and sal. • Rate-limiting steps were overcome by promoter engineering and chromosomal integration.


Asunto(s)
Aldehído-Liasas , Fitosteroles , Androstadienos , Diferenciación Celular , Polienos
7.
Appl Microbiol Biotechnol ; 108(1): 184, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289384

RESUMEN

Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.


Asunto(s)
Aminobutiratos , Escherichia coli , Transaminasas , Transaminasas/genética , Escherichia coli/genética , Ácido Butírico , Glucosa 1-Deshidrogenasa , Ácido Glutámico
8.
Biotechnol Lett ; 46(4): 699-711, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733437

RESUMEN

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.


Asunto(s)
Epiclorhidrina , Hidrolasas , Epiclorhidrina/química , Epiclorhidrina/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrolasas/química , Cinética , Estereoisomerismo , Escherichia coli/genética , Escherichia coli/enzimología , Ingeniería de Proteínas/métodos , alfa-Clorhidrina/análogos & derivados
9.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676737

RESUMEN

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Asunto(s)
Thermotoga , Thermotoga/enzimología , Thermotoga/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/biosíntesis , Fructosa/metabolismo , Fructosa/biosíntesis , Fructosa/química , Estabilidad de Enzimas , Biocatálisis , Mutagénesis Sitio-Dirigida , Calor
10.
Chembiochem ; 24(12): e202300165, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37170827

RESUMEN

We developed a synthetic route for producing 3-amino-2-hydroxy acetophenone (3AHAP) from m-nitroacetophenone (3NAP) using an in vitro approach. Various reaction systems were evaluated, and a direct reaction method with crude enzyme and supersaturated substrates for optimal catalytic efficiency was chosen. The reaction system included three enzymes and was enhanced by adjusting enzyme molar ratios and optimizing ribosomal binding sites. We performed substrate docking and alanine scanning to identify key sites in the enzymes nitrobenzene nitroreductase (nbzA) and hydroxylaminobenzene mutase (habA). The optimal mutant was obtained through site-directed mutagenesis, and incorporated into the reaction system, resulting in increased product yield. After optimization, the yield of 3AHAP increased from 75 mg/L to 580 mg/L within 5 hours, the highest reported yield using biosynthesis. This work provides a promising strategy for the efficient and sustainable production of 3AHAP, which has critical applications in the chemical and pharmaceutical industries.


Asunto(s)
Acetofenonas , Biosíntesis de Proteínas , Catálisis , Acetofenonas/metabolismo
11.
Appl Environ Microbiol ; 89(11): e0110623, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37902313

RESUMEN

IMPORTANCE: The adenosine 5'-triphosphate (ATP) regeneration system can significantly reduce the cost of many biocatalytic processes. Numerous studies have endeavored to utilize the ATP regeneration system based on Cytophaga hutchinsonii PPK (ChPPK). However, the wild-type ChPPK enzyme possesses limitations such as low enzymatic activity, poor stability, and limited substrate tolerance, impeding its application in catalytic reactions. To enhance the performance of ChPPK, we employed a semi-rational design approach to obtain the variant ChPPK/A79G/S106C/I108F/L285P. The enzymatic kinetic parameters and the catalytic performance in the synthesis of nicotinamide mononucleotide demonstrated that the variant ChPPK/A79G/S106C/I108F/L285P exhibited superior enzymatic properties than the wild-type enzyme. All data indicated that our engineered ATP regeneration system holds inherent potential for implementation in biocatalytic processes.


Asunto(s)
Adenosina Trifosfato , Escherichia coli , Análisis Costo-Beneficio , Cytophaga , Regeneración , Adenosina
12.
Crit Rev Biotechnol ; 43(1): 121-141, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34865578

RESUMEN

Glycoside hydrolases (GHs) exhibit high activity and stability under harsh conditions, such as high temperatures and extreme pHs, given their wide use in industrial biotechnology. However, strategies for improving the acidophilic and alkalophilic adaptations of GHs are poorly summarized due to the complexity of the mechanisms of these adaptations. This review not only highlights the adaptation mechanisms of acidophilic and alkalophilic GHs under extreme pH conditions, but also summarizes the recent advances in engineering the pH performances of GHs with a focus on four strategies of protein engineering, enzyme immobilization, chemical modification, and medium engineering (additives). The examples described here summarize the methods used in modulating the pH performances of GHs and indicate that methods integrated in different protein engineering techniques or methods are efficient to generate industrial biocatalysts with the desired pH performance and other adapted enzyme properties.


Asunto(s)
Glicósido Hidrolasas , Ingeniería de Proteínas , Glicósido Hidrolasas/química , Biotecnología , Enzimas Inmovilizadas/química
13.
Biotechnol Bioeng ; 120(12): 3427-3445, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638646

RESUMEN

Structural information can help engineer enzymes. Usually, specific amino acids in particular regions are targeted for functional reconstruction to enhance the catalytic performance, including activity, stereoselectivity, and thermostability. Appropriate selection of target sites is the key to structure-based design, which requires elucidation of the structure-function relationships. Here, we summarize the mutations of residues in different specific regions, including active center, access tunnels, and flexible loops, on fine-tuning the catalytic performance of enzymes, and discuss the effects of altering the local structural environment on the functions. In addition, we keep up with the recent progress of structure-based approaches for enzyme engineering, aiming to provide some guidance on how to take advantage of the structural information.


Asunto(s)
Aminoácidos , Ingeniería de Proteínas , Biocatálisis , Catálisis , Estabilidad de Enzimas
14.
Biotechnol Bioeng ; 120(12): 3543-3556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641876

RESUMEN

Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.


Asunto(s)
Caproatos , Kluyveromyces , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/química , Catálisis , Aldehído Reductasa/genética
15.
Biotechnol Bioeng ; 120(6): 1521-1530, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36799475

RESUMEN

Carbonyl reductase (CR)-catalyzed bioreduction in the organic phase and the neat substrate reaction system is a lasting challenge, placing higher requirements on the performance of enzymes. Protein engineering is an effective method to enhance the properties of enzymes for industrial applications. In the present work, a single point mutation E145A on our previously constructed CR mutant LsCRM3 , coevolved thermostability, and activity. Compared with LsCRM3 , the catalytic efficiency kcat /KM of LsCRM3 -E145A (LsCRM4 ) was increased from 6.6 to 21.9 s-1 mM-1 . Moreover, E145A prolonged the half-life t1/2 at 40°C from 4.1 to 117 h, T m ${T}_{m}$ was increased by 5°C, T 50 30 ${T}_{50}^{30}$ was increased by 14.6°C, and Topt was increased by 15°C. Only 1 g/L of lyophilized Escherichia coli cells expressing LsCRM4 completely reduced up to 600 g/L 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) within 13 h at 45°C, yielding the corresponding (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) in 99.5% eeP , with a space-time yield of 1.0 kg/L d, the substrate to catalyst ratios (S/C) of 600 g/g. Compared with LsCRM3 , the substrate loading was increased by 50%, with the S/C increased by 14 times. Compared with LsCRWT , the substrate loading was increased by 6.5 times. In contrast, LsCRM4 completely converted 600 g/L CFPO within 12 h in the neat substrate bioreaction system.


Asunto(s)
Mutación Puntual , Ingeniería de Proteínas , Catálisis , Etanol , Especificidad por Sustrato
16.
Biotechnol Bioeng ; 120(10): 2940-2952, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227020

RESUMEN

2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) is the essential precursor keto acid for the asymmetric biosynthesis of herbicide l-phosphinothricin (l-PPT). Developing a biocatalytic cascade for PPO production with high efficiency and low cost is highly desired. Herein, a d-amino acid aminotransferase from Bacillus sp. YM-1 (Ym DAAT) with high activity (48.95 U/mg) and affinity (Km = 27.49 mM) toward d-PPT was evaluated. To circumvent the inhibition of by-product d-glutamate (d-Glu), an amino acceptor (α-ketoglutarate) regeneration cascade was constructed as a recombinant Escherichia coli (E. coli D), by coupling Ym d-AAT, d-aspartate oxidase from Thermomyces dupontii (TdDDO) and catalase from Geobacillus sp. CHB1. Moreover, the regulation of the ribosome binding site was employed to overcome the limiting step of expression toxic protein TdDDO in E. coli BL21(DE3). The aminotransferase-driven whole-cell biocatalytic cascade (E. coli D) showed superior catalytic efficiency for the synthesis of PPO from d,l-phosphinothricin (d,l-PPT). It revealed the production of PPO exhibited high space-time yield (2.59 g L-1 h-1 ) with complete conversion of d-PPT to PPO at high substrate concentration (600 mM d,l-PPT) in 1.5 L reaction system. This study first provides the synthesis of PPO from d,l-PPT employing an aminotransferase-driven biocatalytic cascade.


Asunto(s)
Escherichia coli , Transaminasas , Transaminasas/genética , Transaminasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Aminoácidos/metabolismo
17.
Bioorg Chem ; 140: 106788, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598433

RESUMEN

Vibegron is a novel, potent, highly selective ß3-adrenergic receptor agonist for the treatment of overactive bladder with higher therapeutic capacity and lower side effects. Methyl(2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxy-3-phenylpropanoate ((2S,3R)-aminohydroxy ester) is a key chiral intermediate for the synthesis of Vibegron. A novel carbonyl reductase from Exiguobacterium sp. s126 (EaSDR6) was isolated using data mining technology from GenBank database with preferable catalytic activity. Hydrogen bond network regulation was performed using site-directed saturation mutagenesis and combination mutagenesis. The mutant EaSDR6A138L/S193A was obtained with the activity improvement by 4.58 folds compared with the wild type EaSDR6. The Km of EaSDR6A138L/S193A was decreased from 1.57 mM to 0.67 mM, kcat was increased by 2.17 folds, and the overall catalytic efficiency kcat/Km was increased by 5.07 folds. The organic-aqueous biphasic bioreaction system for the asymmetric synthesis of (2S,3R)-aminohydroxy ester was constructed for the first time. Under the substrate concentration of 150 g/L, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99%, and the spatiotemporal yield was 1.55 g/(L·h·g DCW) after 12 h reaction. While the substrate concentration was increased to 200 g/L and the reaction lasted for 36 h, the yield of (2S,3R)-aminohydroxy ester was > 99.99%, the e.e. was > 99.99% and the spatiotemporal yield was 1.05 g/(L·h·g DCW). The substrate concentration and spatiotemporal yield were higher than ever reported.


Asunto(s)
Oxidorreductasas de Alcohol , Pirimidinonas , Enlace de Hidrógeno , Oxidorreductasas de Alcohol/genética , Ésteres
18.
Bioorg Chem ; 138: 106640, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37320911

RESUMEN

Enantiopure ß-nitroalcohols, as an important class of nitro-containing compounds, are essential building blocks in pharmaceutical and organic chemistry, particularly for the synthesis of ß-adrenergic blockers. In this study, we present the successful protein engineering of halohydrin dehalogenase HHDHamb for the enantioselective bio-nitration of various phenyl glycidyl ethers to the corresponding chiral ß-nitroalcohols, using the inexpensive, commercially available, and safer nitrite as a nitrating agent. The chiral (R)- and (S)-1-nitro-3-phenoxypropan-2-ols were synthesized by the several enantiocomplementary HHDHamb variants through the whole-cell biotransformation, which showed good catalytic efficiency (up to 43% isolated yields) and high optical purity (up to >99% ee). In addition, we also demonstrated that the bio-nitration method was able to tolerate the substrate at a high concentration of 1000 mM (150 g/L). Furthermore, representative synthesis of two optically active enantiomers of the ß-adrenergic blocker metoprolol was successfully achieved by utilizing the corresponding chiral ß-nitroalcohols as precursors.


Asunto(s)
Antagonistas Adrenérgicos beta , Éteres Fenílicos , Antagonistas Adrenérgicos beta/química , Biocatálisis , Catálisis , Estereoisomerismo
19.
Appl Microbiol Biotechnol ; 107(20): 6351-6362, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37606789

RESUMEN

The structural integrity and esthetic appeal of concrete can be compromised by concrete cracks. Promise has been shown by microbe-induced calcium carbonate precipitation (MICP) as a solution for concrete cracking, with a focus on urease-producing microorganisms in research. Bacillus cereus was isolated from soil and employed for this purpose in this study due to its high urease activity. The strain exhibited strong tolerance for alkaline media and high salt levels, which grew at a pH of 13 and 4% salt concentration. The repair of concrete cracks with this strain was evaluated by assessing the effects of four different thickeners at varying concentrations. The most effective results were achieved with 10 g/L of sodium carboxymethyl cellulose (CMC-Na). The data showed that over 90% repair of cracks was achieved by this system with an initial water penetration time of 30 s. The study also assessed the quantity and sizes of crystals generated during the bacterial mineralization process over time to improve our understanding of the process. KEY POINTS: • MICP using Bacillus cereus shows potential for repairing concrete cracks. • Strain tolerates alkaline media and high salt levels, growing at pH 13 and 4% salt concentration. • Sodium carboxymethyl cellulose (CMC-Na) at 10 g/L achieved over 90% repair of cracks.


Asunto(s)
Bacillus cereus , Bacillus , Ureasa , Carboximetilcelulosa de Sodio , Carbonato de Calcio/química , Cloruro de Sodio , Sodio , Precipitación Química , Materiales de Construcción/microbiología
20.
Bioprocess Biosyst Eng ; 46(9): 1279-1291, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450268

RESUMEN

Cellobiose 2-epimerase (CE) is ideally suited to synthesize lactulose from lactose, but the poor thermostability and catalytic efficiency restrict enzymatic application. Herein, a non-characterized CE originating from Caldicellulosiruptor morganii (CmCE) was discovered in the NCBI database. Then, a smart mutation library was constructed based on FoldX ΔΔG calculation and modeling structure analysis, from which a positive mutant D226G located within the α8/α9 loop exhibited longer half-lives at 65-75 °C as well as lower Km and higher kcat/Km values compared with CmCE. Molecular modeling demonstrated that the improvement of D226G was largely attributed to the rigidification of the flexible loop, the compactness of the catalysis pocket and the increment of substrate-binding capability. Finally, the yield of synthesizing lactulose catalyzed by D226G reached 45.5%, higher than the 35.9% achieved with CmCE. The disclosed effect of the flexible loop on enzymatic stability and catalysis provides insight to redesign efficient CEs to biosynthesize lactulose.


Asunto(s)
Lactosa , Lactulosa , Lactulosa/química , Lactosa/química , Celobiosa/química , Racemasas y Epimerasas/genética , Clostridiales , Diseño Asistido por Computadora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA