Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 20(35): e2401346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38700047

RESUMEN

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

2.
New Phytol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803107

RESUMEN

Phosphate starvation response (PHR) transcription factors play essential roles in regulating phosphate uptake in plants through binding to the P1BS cis-element in the promoter of phosphate starvation response genes. Recently, PHRs were also shown to positively regulate arbuscular mycorrhizal colonization in rice and lotus by controlling the expression of many symbiotic genes. However, their role in arbuscule development has remained unclear. In Medicago, we previously showed that arbuscule degradation is controlled by two SPX proteins that are highly expressed in arbuscule-containing cells. Since SPX proteins bind to PHRs and repress their activity in a phosphate-dependent manner, we investigated whether arbuscule maintenance is also regulated by PHR. Here, we show that PHR2 is a major regulator of the phosphate starvation response in Medicago. Knockout of phr2 showed reduced phosphate starvation response, symbiotic gene expression, and fungal colonization levels. However, the arbuscules that formed showed less degradation, suggesting a negative role for PHR2 in arbuscule maintenance. This was supported by the observation that overexpression of PHR2 led to enhanced degradation of arbuscules. Although many arbuscule-induced genes contain P1BS elements in their promoters, we found that the P1BS cis-elements in the promoter of the symbiotic phosphate transporter PT4 are not required for arbuscule-containing cell expression. Since both PHR2 and SPX1/3 negatively affect arbuscule maintenance, our results indicate that they control arbuscule maintenance partly via different mechanisms. While PHR2 potentiates symbiotic gene expression and colonization, its activity in arbuscule-containing cells needs to be tightly controlled to maintain a successful symbiosis in Medicago.

3.
BMC Vet Res ; 20(1): 355, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123170

RESUMEN

Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.


Asunto(s)
Enfermedades de los Bovinos , Diarrea , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Bovinos , Diarrea/veterinaria , Diarrea/microbiología , Heces/microbiología , Enfermedades de los Bovinos/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
4.
J Cell Mol Med ; 27(19): 2876-2889, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37471571

RESUMEN

Acute kidney injury (AKI), mainly caused by Ischemia/reperfusion injury (IRI), is a common and severe life-threatening disease with high mortality. Accumulating evidence suggested a direct relationship between endoplasmic reticulum (ER) stress response and AKI progression. However, the role of the transmissible ER stress response, a new modulator of cell-to-cell communication, in influencing intercellular communication between renal tubular epithelial cells (TECs) and macrophages in the AKI microenvironment remains to be determined. To address this issue, we first demonstrate that TECs undergoing ER stress are able to transmit ER stress to macrophages via exosomes, promoting macrophage polarization towards the pro-inflammatory M1 phenotype in vitro and in vivo. Besides, the miR-106b-5p/ATL3 signalling axis plays a pivotal role in the transmission of ER stress in the intercellular crosstalk between TECs and macrophages. We observed an apparent increase in the expression of miR-106b-5p in ER-stressed TECs. Furthermore, we confirmed that ALT3 is a potential target protein of miR-106b-5p. Notably, the inhibition of miR-106b-5p expression in macrophages not only restores ATL3 protein level but also decreases transmissible ER stress and hinders M1 polarization, thus alleviating AKI progression. Additionally, our results suggest that the level of exosomal miR-106b-5p in urine is closely correlated with the severity of AKI patients. Taken together, our study sheds new light on the crucial role of transmissible ER stress in the treatment of AKI through the regulation of the miR-106b-5p/ATL3 axis, offering new ideas for treating AKI.

5.
Cytogenet Genome Res ; 161(3-4): 167-177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33951625

RESUMEN

The barrier-to-autointegration factor (BAF) is widely expressed in most human tissues and plays a critical role in chromatin organization, nuclear envelope assembly, gonadal development, and embryonic stem cell self-renewal. Complete loss of BAF has been shown to lead to embryonic lethality and gonadal defects. The BAF paralog, namely, barrier-to-autointegration factor 2 (BANF2), exhibits a testis-predominant expression pattern in both humans and mice. Unlike BAF, it may cause isolated male infertility. Therefore, we used the CRISPR/Cas9 system to generate Banf2-knockout mice to further study its function in spermatogenesis. Unexpectedly, knockout mice did not show any detectable abnormalities in histological structure of the testis, epididymis, ovary, and other tissues, and exhibited normal fertility, indicating that Banf2 is not essential for mouse spermatogenesis and fertility.


Asunto(s)
Fertilidad/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Espermatogénesis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Esenciales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatozoides/metabolismo , Testículo/citología , Testículo/metabolismo
6.
BMC Cancer ; 21(1): 194, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632172

RESUMEN

BACKGROUND: Multiple common variants identified by genome-wide association studies have shown limited evidence of the risk of breast cancer in Chinese individuals. In this study, we aimed to uncover the relationship between estrogen levels and the genetic polymorphism of estrogen metabolism-related enzymes in breast cancer (BC) and establish a risk prediction model composed of estrogen-metabolizing enzyme genes and GWAS-identified breast cancer-related genes based on a polygenic risk score. METHODS: Unrelated BC patients and healthy subjects were recruited for analysis of estrogen levels and single nucleotide polymorphisms (SNPs) in genes encoding estrogen metabolism-related enzymes. The polygenic risk score (PRS) was used to explore the combined effect of multiple genes, which was calculated using a Bayesian approach. An independent sample t-test was used to evaluate the differences between PRS scores of BC and healthy subjects. The discriminatory accuracy of the models was compared using the area under the receiver operating characteristic (ROC) curve. RESULTS: The estrogen homeostasis profile was disturbed in BC patients, with parent estrogens (E1, E2) and carcinogenic catechol estrogens (2/4-OHE1, 2-OHE2, 4-OHE2) significantly accumulating in the serum of BC patients. We then established a PRS model to evaluate the role of SNPs in multiple genes. PRS model 1 (M1) was established from SNPs in 6 GWAS-identified high risk genes. On the basis of M1, we added SNPs from 7 estrogen metabolism enzyme genes to establish PRS model 2 (M2). The independent sample t-test results showed that there was no difference between BC and healthy subjects in M1 (P = 0.17); however, there was a significant difference between BC and healthy subjects in M2 (P = 4.9*10- 5). The ROC curve results showed that the accuracy of M2 (AUC = 62.18%) in breast cancer risk identification was better than that of M1 (AUC = 54.56%). CONCLUSION: Estrogen and related metabolic enzyme gene polymorphisms are closely related to BC. The model constructed by adding estrogen metabolic enzyme gene SNPs has a good predictive ability for breast cancer risk, and the accuracy is greatly improved compared with that of the PRS model that only includes GWAS-identified gene SNPs.


Asunto(s)
Neoplasias de la Mama/genética , Estrógenos/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Teorema de Bayes , Neoplasias de la Mama/etiología , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad
7.
Front Microbiol ; 15: 1330079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562472

RESUMEN

Cellobiose dehydrogenase (CDH) is one of the cellulase auxiliary proteins, which is widely used in the field of biomass degradation. However, how to efficiently and cheaply apply it in industrial production still needs further research. Aspergillus niger C112 is a significant producer of cellulase and has a relatively complete lignocellulose degradation system, but its CDH activity was only 3.92 U. To obtain a recombinant strain of A. niger C112 with high cellulases activity, the CDH from the readily available white-rot fungus Grifola frondose had been heterologously expressed in A. niger C112, under the control of the gpdA promoter. After cultivation in the medium with alkali-pretreated poplar fiber as substrate, the enzyme activity of recombinant CDH reached 36.63 U/L. Compared with the original A. niger C112, the recombinant A. niger transformed with Grifola frondosa CDH showed stronger lignocellulase activity, the activities of cellulases, ß-1, 4-glucosidase and manganese peroxidase increased by 28.57, 35.07 and 121.69%, respectively. The result showed that the expression of the gcdh gene in A. niger C112 could improve the activity of some lignocellulose degrading enzymes. This work provides a theoretical basis for the further application of gcdh gene in improving biomass conversion efficiency.

8.
STAR Protoc ; 5(1): 102881, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38386546

RESUMEN

Here, we present a protocol for inducing fibrosis in human kidney-2 (HK2) cells followed by quantitative real-time PCR analysis of fibrosis-related genes. We describe steps for growing and expanding cells, inducing HK2 fibrosis, and collecting cells for downstream applications. Given the limited cell quantity in culture flasks and the challenges of cell collection, we utilized 10-cm Petri dishes for cell harvesting, with each experimental group comprising five replicate samples. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.


Asunto(s)
Células Epiteliales , Riñón , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Fibrosis
9.
Int Immunopharmacol ; 142(Pt A): 113034, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39226826

RESUMEN

Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1ß production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.

10.
Front Public Health ; 12: 1343939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220451

RESUMEN

Background: Older patients are at high risk of falling, and regular assessments of their concerns about falling (CaF) are often recommended. The present study aimed to investigate the association between CaF and personality traits among older patients as well as to elucidate the mediating role of subjective age. Method: A cross-sectional study was conducted among 407 patients aged over 60 years in a tertiary hospital located in Chengdu, Sichuan Province, from March 2023 to May 2023. Predesigned electronic questionnaires were distributed to collect relevant data. Four different models (both crude and adjusted weighted linear regression models) were constructed based on the confounders. Confounders were gradually put into the models to control for bias and to examine the stability of the correlations. Bootstrap sampling was employed to examine the mediating role of subjective age. Result: According to the fully adjusted model, neuroticism (ß = 0.17, 95% CI: 0.02 to 0.31, p for trend = 0.02), extraversion (ß = -0.07, 95% CI: -0.15 to 0.001, p for trend = 0.05), and subjective age (ß = 2.02, 95% CI: 1.28 to 2.78, p for trend <0.001) were consistently correlated with CaF. Mediating analysis revealed that extraversion was negatively related with CaF both directly and indirectly, via subjective age [23.2% partial effect, bootstrap 95%CI: -0.024(-0.080, -0.000)]. Higher neuroticism was consistently related to older subjective age (ß = 0.002, 95% CI: 0.001 to 0.004, p for trend = 0.006), while higher levels of conscientiousness, openness, and extraversion were consistently correlated with younger subjective age(ß = -0.002, p for trend = 0.04; ß = -0.003, p for trend = 0.003; ß = -0.002, p for trend = 0.0, respectively). Conclusion: Extraversion and neuroticism were significantly correlated with CaF. Moreover, subjective age partially mediated the relationship between extraversion and CaF. Furthermore, subjective age was found to be associated with both CaF and personality traits. These findings highlighted the important roles of personality traits and subjective age in assessments of CaF and in the development of strategies for preventing falls among older patients.


Asunto(s)
Accidentes por Caídas , Personalidad , Humanos , Masculino , Femenino , Anciano , Estudios Transversales , Accidentes por Caídas/estadística & datos numéricos , Persona de Mediana Edad , Encuestas y Cuestionarios , China/epidemiología , Factores de Edad , Anciano de 80 o más Años
11.
ACS Appl Mater Interfaces ; 16(36): 47996-48004, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39221579

RESUMEN

In the vanguard of neuromorphic engineering, we develop a paradigm of biocompatible polymer memcapacitors using a seamless solution process, unleashing comprehensive synaptic capabilities depending on both the stimulation form and history. Like the human brain to learn and adapt, the memcapacitors exhibit analogue-type and evolvable capacitance shifts that mirror the complex flexibility of synaptic strengthening and weakening. With increasing frequency and intensity of the stimulation, the memcapacitors demonstrate an evolution from short-term plasticity (STP) to long-term plasticity (LTP), and even to metaplasticity (MP) at a higher level. A physical picture, featuring the stimulus-controlled spatiotemporal ion redistribution in the polymer, elaborates the origin of the memcapacitive prowess and resultant versatile synaptic plasticity. The distinctive MP behavior endows the memcapacitors with a dynamic learning rate (LR), which is utilized in an artificial neural network. The superiority of implementing a dynamic LR compared with conventional practices of using constant LR shines light on the potential of the memcapacitors to exploit organic neuromorphic computing hardware.

12.
Viruses ; 16(4)2024 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675947

RESUMEN

Tibetan pig is a geographically isolated pig breed that inhabits high-altitude areas of the Qinghai-Tibetan plateau. At present, there is limited research on viral diseases in Tibetan pigs. This study provides a novel metagenomic exploration of the gut virome in Tibetan pigs (altitude ≈ 3000 m) across three critical developmental stages, including lactation, nursery, and fattening. The composition of viral communities in the Tibetan pig intestine, with a dominant presence of Microviridae phages observed across all stages of development, in combination with the previous literature, suggest that it may be associated with geographical locations with high altitude. Functional annotation of viral operational taxonomic units (vOTUs) highlights that, among the constantly increasing vOTUs groups, the adaptability of viruses to environmental stressors such as salt and heat indicates an evolutionary response to high-altitude conditions. It shows that the lactation group has more abundant viral auxiliary metabolic genes (vAMGs) than the nursery and fattening groups. During the nursery and fattening stages, this leaves only DNMT1 at a high level. which may be a contributing factor in promoting gut health. The study found that viruses preferentially adopt lytic lifestyles at all three developmental stages. These findings not only elucidate the dynamic interplay between the gut virome and host development, offering novel insights into the virome ecology of Tibetan pigs and their adaptation to high-altitude environments, but also provide a theoretical basis for further studies on pig production and epidemic prevention under extreme environmental conditions.


Asunto(s)
Altitud , Microbioma Gastrointestinal , Metagenómica , Viroma , Animales , Porcinos , Viroma/genética , Microbioma Gastrointestinal/genética , Tibet , Virus/genética , Virus/clasificación , Metagenoma , Femenino , Genoma Viral
13.
Open Med (Wars) ; 18(1): 20230736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305520

RESUMEN

To explore the pharmacological mechanism of naringin (NRG) in renal fibrosis (RF) based on network pharmacology combined with molecular docking and experimental validation. We used databases to screen for the targets of NRG and RF. The "drug-disease network" was established using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of targets were performed using Metascape, and molecular docking was performed using Schrödinger. We established an RF model in both mice and cells to validate the results of network pharmacology. After screening the database, we identified 222 common targets of NRG and RF and established a target network. Molecular docking showed that the target AKT had a good interaction with NRG. We found that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was enriched by multiple targets and served as a target for experimental validation through GO and KEGG. The results revealed that NRG ameliorated renal dysfunction, reduced the release of inflammatory cytokines, decreased the expression of α-SMA, collagen I, and Fn, and recovered the expression of E-cad by inhibiting the PI3K/AKT signaling pathway. Our study used pharmacological analysis to predict the targets and mechanisms of NRG against RF. Furthermore, experiments proved that NRG inhibited RF effectively by targeting the PI3K/AKT signaling pathway.

14.
iScience ; 26(11): 107332, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37927553

RESUMEN

Chronic kidney disease (CKD) is a common disease that seriously endangers human health. However, the potential relationship between xanthine oxidoreductase (XOR) activity and CKD remains unclear. In this study, we used clinical data, CKD datasets from the Gene Expression Omnibus database, and untargeted metabolomics to explain the relationship between XOR activity and CKD. First, XOR activity showed high correlation with the biomarkers of CKD, such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomerular filtration rate. Then, we used least absolute shrinkage and selection operator logical regression algorithm and random forest algorithm to screen CKD molecular markers from differentially expressed genes, and the results of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics analyses. In addition, untargeted metabolomics analysis revealed that the purine metabolism pathway was significantly enriched in CKD patients in the simulated models of kidney fibrosis.

15.
Adv Mater ; 35(37): e2203684, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35735048

RESUMEN

Diverse microscopic ionic dynamics help mediate the ability of a biological neural network to handle complex tasks with low energy consumption. Thus, rich internal ionic dynamics in memristors based on transition metal oxide are expected to provide a unique and useful platform for implementing energy-efficient neuromorphic computing. To this end, a titanium oxide (TiOx )-based interface-type dynamic memristor and an niobium oxide (NbOx )-based Mott memristor are integrated as an artificial dendrite and spike-firing soma, respectively, to construct a dendritic neuron unit for realizing high-efficiency spatial-temporal information processing. Further, a dendritic neural network is hardware-implemented for spatial-temporal information processing to highlight the computational advantages achieved by incorporating dendritic functions in the network. Human motion recognition is demonstrated using the Nanyang Technological University-Red Green Blue (NTU-RGB) dataset as a benchmark spatial-temporal task; it shows a nearly 20% improvement in accuracy for the memristors-based hardware incorporating dendrites and a 1000× advantage in power efficiency compared to that of the graphics processing unit (GPU). The dendritic neuron developed in this study can be considered a critical building block for implementing more bio-plausible neural networks that can manage complex spatial-temporal tasks with high efficiency.

16.
ACS Appl Mater Interfaces ; 15(41): 48452-48461, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37802499

RESUMEN

Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.

17.
Nat Commun ; 13(1): 1549, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322037

RESUMEN

Hardware implementation in resource-efficient reservoir computing is of great interest for neuromorphic engineering. Recently, various devices have been explored to implement hardware-based reservoirs. However, most studies were mainly focused on the reservoir layer, whereas an end-to-end reservoir architecture has yet to be developed. Here, we propose a versatile method for implementing cyclic reservoirs using rotating elements integrated with signal-driven dynamic neurons, whose equivalence to standard cyclic reservoir algorithm is mathematically proven. Simulations show that the rotating neuron reservoir achieves record-low errors in a nonlinear system approximation benchmark. Furthermore, a hardware prototype was developed for near-sensor computing, chaotic time-series prediction and handwriting classification. By integrating a memristor array as a fully-connected output layer, the all-analog reservoir computing system achieves 94.0% accuracy, while simulation shows >1000× lower system-level power than prior works. Therefore, our work demonstrates an elegant rotation-based architecture that explores hardware physics as computational resources for high-performance reservoir computing.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Algoritmos , Simulación por Computador , Computadores , Neuronas/fisiología
18.
Bioengineered ; 12(1): 138-150, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33350341

RESUMEN

In this study, contrary to untreated poplar fiber, processing of alkali-treated poplar fiber was optimized for the enzymatic saccharification. Considering reducing sugar content as the evaluation index, pH, temperature, time, amount of enzyme, and rotational speed of shaker were standardized to optimize the sugar production by enzymatic hydrolysis. Using response surface methodology, the optimum technological condition of enzymatic hydrolysis was found to be utilizing 43 mg cellulase at 46 °C for 50 h. At this, the sugar conversion amount of NaOH or H2O2-NaOH pretreated poplar was 164.62 mg/g and 218.82 mg/g respectively. It was a corresponding increase of 446.73% or 626.75% than that of poplar fiber without a pretreatment. At a low concentration, metal ions and surfactants promoted the conversion of reducing sugar. Especially, 0.01 g/L Mn2+ and 0.50 g/L hexadecyl trimethyl ammonium bromide (CTAB) produced the best effect and increased the conversion rate of reducing sugar by 23.62% and 21.44% respectively. Also, the effect of the combination of metal ions and surfactants was better than that of a single accelerator. By improving the enzymatic process, these findings could enhance the utilization of poplar fiber for the production of reducing sugar.


Asunto(s)
Álcalis/química , Lignina/química , Metales Pesados/química , Populus/química , Tensoactivos/química , Biomasa , Hidrólisis , Hidróxido de Sodio/química , Madera/química
19.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760102

RESUMEN

Gene expression analyses have revealed that there are >2,300 testis-enriched genes in mice, and gene knockout models have shown that a number of them are responsible for male fertility. However, the functions of numerous genes have yet to be clarified. The aim of the present study was to identify the expression pattern of testis-expressed protein 33 (TEX33) in mice and explore the role of TEX33 in male reproduction. Reverse transcription-polymerase chain reaction and western blot assays were used to investigate the mRNA and protein levels of TEX33 in mouse testes during the first wave of spermatogenesis. Immunofluorescence analysis was also performed to identify the cellular and structural localization of TEX33 protein in the testes. Tex33 knockout mice were generated by CRISPR/Cas9 gene-editing. Histological analysis with hematoxylin and eosin or periodic acid-Schiff (PAS) staining, computer-assisted sperm analysis (CASA) and fertility testing, were also carried out to evaluate the effect of TEX33 on mouse spermiogenesis and male reproduction. The results showed that Tex33 mRNA and protein were exclusively expressed in mouse testes and were first detected on postnatal days 21-28 (spermiogenesis phase); their expression then remained into adulthood. Immunofluorescence analysis revealed that TEX33 protein was located in the spermatids and sperm within the seminiferous tubules of the mouse testes, and exhibited specific localization to the acrosome, flagellum and manchette during spermiogenesis. These results suggested that TEX33 may play a role in mouse spermiogenesis. However, Tex33 knockout mice presented no detectable difference in testis-to-body weight ratios when compared with wild-type mice. PAS staining and CASA revealed that spermatogenesis and sperm quality were normal in mice lacking Tex33. In addition, fertility testing suggested that the Tex33 knockout mice had normal reproductive functions. In summary, the findings of the present study indicate that TEX33 is associated with spermiogenesis but is not essential for sperm development and male fertility.


Asunto(s)
Fertilidad/genética , Infertilidad Masculina/genética , Espermatogénesis/genética , Testículo/metabolismo , Acrosoma/metabolismo , Acrosoma/patología , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Espermatozoides/crecimiento & desarrollo , Espermatozoides/patología , Testículo/patología
20.
Nat Commun ; 12(1): 408, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462233

RESUMEN

Reservoir computing is a highly efficient network for processing temporal signals due to its low training cost compared to standard recurrent neural networks, and generating rich reservoir states is critical in the hardware implementation. In this work, we report a parallel dynamic memristor-based reservoir computing system by applying a controllable mask process, in which the critical parameters, including state richness, feedback strength and input scaling, can be tuned by changing the mask length and the range of input signal. Our system achieves a low word error rate of 0.4% in the spoken-digit recognition and low normalized root mean square error of 0.046 in the time-series prediction of the Hénon map, which outperforms most existing hardware-based reservoir computing systems and also software-based one in the Hénon map prediction task. Our work could pave the road towards high-efficiency memristor-based reservoir computing systems to handle more complex temporal tasks in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA