Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Sci ; 133(7)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265230

RESUMEN

Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases play a critical role in various cellular pathways, including but not limited to protein trafficking, subcellular localization, innate immune response, viral infections, DNA damage responses and apoptosis. To date, 28 HECT E3 ubiquitin ligases have been identified in humans, and recent studies have begun to reveal how these enzymes control various cellular pathways by catalyzing the post-translational attachment of ubiquitin to their respective substrates. New studies have identified substrates and/or interactors with different members of the HECT E3 ubiquitin ligase family, particularly for E6AP and members of the neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) family. However, there still remains many unanswered questions about the specific roles that each of the HECT E3 ubiquitin ligases have in maintaining cellular homeostasis. The present Review discusses our current understanding on the biological roles of the HECT E3 ubiquitin ligases in the cell and how they contribute to disease development. Expanded investigations on the molecular basis for how and why the HECT E3 ubiquitin ligases recognize and regulate their intracellular substrates will help to clarify the biochemical mechanisms employed by these important enzymes in ubiquitin biology.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Langmuir ; 37(50): 14713-14723, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34873907

RESUMEN

Rheological properties are critical for determining real applications of supramolecular gels in various fields. Correspondingly, the modulation of gel rheology will be very important for meeting real requirements. In this aspect, a few strategies were applied to tune the rheological behaviors of supramolecular gels, but some specific interactions like charge transfer (CT) interactions were less explored at the molecular level. Herein, we report a pyrene-containing derivative of diphenylalanine as a donor gelator and naphthalenediimide or 3,5-dinitrobenzene as matching acceptor molecules. It was found that the viscoelastic properties and strength of the original gel could be tuned through addition of different acceptor molecules to the original gel with changing the ratios of the selected acceptor molecules. As a result, storage modulus was continuously adjusted over a wide range from 190,000 to 50,000 Pa by CT interactions. Furthermore, the mechanism of the CT-induced change in rheological properties was understood and clarified through relevant techniques (e.g., UV-Vis, fluorescence, and FT-IR spectroscopy and TEM). The findings in this work would provide a novel strategy to modulate the rheological properties of supramolecular gels for adaption to broader fields of real applications.

4.
Phys Chem Chem Phys ; 18(15): 10255-61, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27022001

RESUMEN

Hydrogen production from seawater and solar energy based on photoelectrochemical cells is extremely attractive due to earth-abundance of seawater and solar radiation. Herein, we report the successful fabrication of novel inorganic-organic 2D/2D WO3/g-C3N4 nanosheet arrays (WO3/g-C3N4 NSAs) grown on a FTO substrate via a facile hydrothermal growth and deposition-annealing process, and their application in natural seawater splitting. The results indicate that the WO3/g-C3N4 NSAs exhibit a photocurrent density of 0.73 mA cm(-2) at 1.23 V versus RHE under AM 1.5G (100 mW cm(-2)) illumination, which is 2-fold higher than that of WO3 NSAs. More importantly, the WO3/g-C3N4 NSA photoanode is quite stable during seawater splitting and the photocurrent density does not substantially decrease after continuous illumination for 3600 s. The remarkably enhanced performance originates primarily from the formation of the WO3/g-C3N4 heterojunction between WO3 and g-C3N4 nanosheets, which accelerates charge transfer and separation, and prolongs the lifetime of electrons as demonstrated by EIS and Mott-Schottky analyses. Finally, a possible mechanism for the improved performance was proposed and discussed.

5.
ACS Appl Mater Interfaces ; 16(23): 29521-29546, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830265

RESUMEN

Zeolites are important classes of crystalline materials and possess well-defined channels and cages with molecular dimensions. They have been extensively employed as heterogeneous catalysts and gas adsorbents due to their relatively large specific surface areas, high pore volumes, compositional flexibility, definite acidity, and hydrothermal stability. The zeolite synthesis normally undergoes high-temperature hydrothermal treatments with a relatively long crystallization time, which exhibits low synthesis efficiency and high energy consumption. Various strategies, e.g., modulation of the synthesis gel compositions, employment of special silica/aluminum sources, addition of seeds, fluoride, hydroxyl (·OH) free radical initiators, and organic additives, regulation of the crystallization conditions, development of new approaches, etc., have been developed to overcome these obstacles. And, these achievements make prominent contributions to the topic of acceleration of the zeolite crystallization and promote the fundamental understanding of the zeolite formation mechanism. However, there is a lack of the comprehensive summary and analysis on them. Herein, we provide an overview of the recent achievements, highlight the significant progress in the past decades on the developments of novel and remarkable strategies to accelerate the crystallization of zeolites, and basically divide them into three main types, i.e., chemical methods, physical methods, and the derived new approaches. The principles/acceleration mechanisms, effectiveness, versatility, and degree of reality for the corresponding approaches are thoroughly discussed and summarized. Finally, the rational design of the prospective strategies for the fast synthesis of zeolites is commented on and envisioned. The information gathered here is expected to provide solid guidance for developing a more effective route to improve the zeolite crystallization and obtain the functional zeolite-based materials with more shortened durations and lowered cost and further promote their applications.

6.
PLoS One ; 19(3): e0297960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38442091

RESUMEN

In recent years, the intensification of global industrialization coupled with the enterprise's production and operating activities have caused pollution, increasing the current environmental pressure. Relevant government departments in China have instituted several stringent measures (environmental protection sensitization and awareness activities, training sessions, and exchange activities targeted towards enterprise managers) to address these rising environmental problems. Though these measures have gained traction over the years, there is a dearth of research on their effectiveness on the green innovation performance of enterprises. To bridge the gap, this research explores the effect of environmental awareness training, knowledge exchange activities, and commitment on green innovation performance with survey data from 285 medical equipment manufacturing companies in China. It further expands the theoretical application of environmental awareness training, commitment, and innovation performance from the lens of the Knowledge-Based View. The findings depict a positive relationship between environmental awareness training and innovation performance. It also finds a mediating influence of environmental commitment in the relationship between environmental awareness training and green innovation performance. Furthermore, environmental knowledge exchange activities positively moderate the relationship between environmental awareness training and environmental commitment. These findings offer valuable insights for the green development of medical equipment manufacturing enterprises and the government to formulate environmental protection policies.


Asunto(s)
Academias e Institutos , Comercio , China , Política Ambiental , Contaminación Ambiental
7.
Sci Rep ; 13(1): 17559, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845249

RESUMEN

In today's digital age, the effort of medical enterprises towards green innovation has gained traction in academic and business circles. However, the current research system for medical equipment suppliers lacks a systematic study on how digital transformation can enhance the outcomes of green innovation. This research aims to develop a theoretical framework for digital transformation, environmental resource integration capability, managerial environmental concern and green innovation performance with respect to the resource-based view and conducting empirical analysis using survey data from medical equipment supply enterprises. Our findings reveal that digital transformation has a significant effect on the promotion of green innovation performance through environmental resource integration capability. Moreover, the managerial environmental concern moderates above mediation effect. These findings not only provide compelling insights into the impact of digital transformation on green innovation performance but also have important implications for sustainable development and cleaner production relevant academic research and policy-making.


Asunto(s)
Comercio , Formulación de Políticas , Desarrollo Sostenible , Tracción , China
8.
Cell Death Dis ; 14(8): 571, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37640723

RESUMEN

The prevalence of chronic kidney disease (CKD) has been increasing over the past decades. However, no effective therapies are available for delaying or curing CKD. Progressive fibrosis is the major pathological feature of CKD, which leads to end-stage renal disease (ESRD). The present study showed that Polo-like kinase 1 (Plk1) was upregulated in the kidneys of CKD patients and mice subjected to unilateral ureteral obstruction (UUO) with location in proximal tubules and tubulointerstitial fibroblasts. Pharmacological inhibition, genetic silencing or knockout of Plk1 attenuated obstructive nephropathy due to suppressed fibroblast activation mediated by reduced autophagic flux. We found Plk1 plays a critical role in maintaining intralysosomal pH by regulating ATP6V1A phosphorylation, and inhibition of Plk1 impaired lysosomal function leading to blockade of autophagic flux. In addition, Plk1 also prevented partial epithelial-mesenchymal transition (pEMT) of tubular epithelial cells via autophagy pathway. In conclusion, this study demonstrated that Plk1 plays a pathogenic role in renal tubulointerstitial fibrosis by regulating autophagy/lysosome axis. Thus, targeting Plk1 could be a promising strategy for CKD treatment.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Insuficiencia Renal Crónica , Animales , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/genética , Insuficiencia Renal Crónica/genética , Autofagia/genética , Quinasa Tipo Polo 1
9.
ACS Omega ; 7(23): 19920-19929, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35722001

RESUMEN

A magnesium-based metal-organic framework (Mg-MOF-74) exhibits excellent CO2 adsorption under ambient conditions. However, the photostability of Mg-MOF-74 for CO2 adsorption is poor. In this study, Mg x Cu1-x -MOF-74 was synthesized by using a facile "one-pot" method. Furthermore, the effects of synthesis conditions on the CO2 adsorption capacity were investigated comprehensively. X-ray diffraction, Fourier transform infrared, scanning electron microscopy, thermo gravimetric analysis, inductively coupled plasma atomic emission spectroscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy, and CO2 static adsorption-desorption techniques were used to characterize the structures, morphology, and physicochemical properties of Mg x Cu1-x -MOF-74. CO2 uptake of Mg x Cu1-x -MOF-74 under visible light illumination was measured by the CO2 static adsorption test combined with the Xe lamp. The results revealed that Mg x Cu1-x -MOF-74 exhibited excellent photocatalytic activity. Furthermore, the CO2 adsorption capacity of Mg x Cu1-x -MOF-74 was excellent at a synthesis temperature and time of 398 K and 24 h in dimethylformamide (DMF)-EtOH-MeOH mixing solvents, respectively. Mg x Cu1-x -MOF-74 retained a crystal structure similar to that of the corresponding monometallic MOF-74, and its CO2 uptake under visible light was superior to that of the corresponding monometallic MOF-74. Particularly, the CO2 uptake of Mg0.4Cu0.6-MOF-74 under Xe lamp illumination for 24 h was the highest, up to 3.52 mmol·g-1, which was 1.18 and 2.09 times higher than that of Mg- and Cu-MOF-74, respectively. The yield of the photocatalytic reduction of CO2 to CO was 49.44 µmol·gcat -1 over Mg0.4Cu0.6-MOF-74 under visible light for 8 h. Mg2+ and Cu2+ functioned as open alkali metal that could adsorb and activate CO2. The synergistic effect between Mg and Cu metal strengthened Mg x Cu1-x -MOF-74 photostability for CO2 adsorption and broadened the scope of its photocatalytic application. The "bimetallic" strategy exhibits considerable potential for use in MOF-based semiconductor composites and provides a feasible method for catalyst design with remarkable CO2 adsorption capacity and photocatalytic activity.

10.
Front Cell Dev Biol ; 9: 754134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746148

RESUMEN

Renal fibrosis contributes to kidney dysfunction in various chronic kidney diseases (CKDs). Renal fibrosis can be driven by renal tubular cell death and inflammation. Deletion of gasdermin E (GSDME), an executor of pyroptosis, has been reported to suppress renal tubular cell pyroptosis in several models of kidney injury. However, additional evidence confirming the role of GSDME in regulating renal fibrosis and kidney function in different CKDs is required. In our study, N-GSDME expression was significantly elevated in CKD models in vivo and in vitro. GSDME deletion alleviated renal fibrosis and inflammation in both unilateral ureteral ligation (UUO) and 5/6 nephrectomy (5/6Nx) models along with the attenuation of renal dysfunction. N-GSDME overexpression had a detrimental effect on fibrotic responses in UUO kidneys and TGF-ß1-treated renal tubular epithelial cells. In addition, administration of caspase-3 inhibitor Z-DEVD-FMK, which inhibits caspase-3-mediated GSDME cleavage, protected against renal fibrosis both in vivo and in vitro. Collectively, these results provide evidence that the activation of GSDME is critical in regulating both renal fibrosis and kidney dysfunction possibly via promoting inflammatory responses in CKD. These findings may offer new insights into the identification of new therapeutic targets for protecting against CKDs.

11.
RSC Adv ; 10(20): 12047-12052, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35496607

RESUMEN

Efficient and green strategy for the chemical conversion and fixation of CO2 is an attractive topic. In this work, we reported an efficient catalytic system of organic base coupled ionic liquids that could catalyse the synthesis of quinazolinones via cyclization of 2-aminobenzonitriles with CO2 under mild conditions (e.g., 60 °C, 0.1 MPa). It was found that 1,8-diazabicyclo[5.4.0]undec-7-ene coupled 1-butyl-3-methylimidazole acetate ionic liquids (DBU/[Bmim][OAc]) displayed excellent performance in catalysing the reactions of CO2 with 2-aminobenzonitriles, and a series of quinazolinones were obtained in high yields at atmospheric pressure. Moreover, the ILs had high stability and reusability, and can be reused at least five times without considerable decrease in catalytic activity. This protocol could also be conducted on a gram scale, and may have promising and practical applications in the production of quinazolinones.

12.
Materials (Basel) ; 12(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614425

RESUMEN

The efficient and green removal of residual antibiotics in the environment is an attractive topic. In this work, four different phenyl porous organic polymers (P-POPs) photocatalysts were successfully synthesized, and a series of techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption and desorption experimentation, and solid ultraviolet visible spectroscopy (UV-vis) were conducted to characterize the obtained P-POPs. Moreover, the photocatalytic property of P-POPs in the removal of tetracycline was studied, and the reaction conditions were optimized. Further study indicated that the P-POPs were also efficient for removing other antibiotics, such as chloramphenicol, in a high removal rate of 77%. Furthermore, the separation of the photocatalysts from the solution was easy, and the photocatalysts could be reused at least four times without a considerable loss in catalytic activity.

13.
Front Chem ; 7: 334, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31157207

RESUMEN

A photoelectrochemical device was achieved by interfacial self-assembly of macrocyclic π-conjugated copper phthalocyanine (CuPc) on surface of TiO2 nanorod arrays (NRs). The photocurrent density of the elegant TiO2@CuPc NRs photoanode reaches 2.40 mA/cm2 at 1.23 V vs. RHE under the illumination of 100 mW/cm2 from AM 1.5G sun simulator, which is 2.4 times higher than that of the pure TiO2. At the same time, the photoelectrochemical device constructed through this strategy has good stability and the photocurrent density remain almost no decline after 8 h of continuous operation. The Mott-Schottky and LSV curves demonstrate that CuPc act as a co-catalyst for water oxidation and a possible mechanism is proposed for water oxidation based on careful analysis of the detailed results. The holes from VB of TiO2 photogenerated by electrons exciting are consumed by a process in which Cu2+ is oxidized to Cu3+ and Cu4+, and then oxidize water to produce oxygen. CuPc species is considered to be a fast redox mediator to reduce the activation energy of water oxidation in and effectively promote charge separation.

14.
J Phys Chem B ; 110(10): 4699-707, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16526705

RESUMEN

This work examines the effects of structural and surface properties of carbon materials on the adsorption of benzothiophene (BT), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) in the presence of 10 wt % of aromatics in liquid alkanes that simulate sulfur compounds in diesel fuels. The equilibrium-adsorption capacity varies significantly, from 1.7 to 7.0 mg-S/g-A. The results show that different carbon materials have significantly different sulfur-adsorption capacities and selectivities that depend not only on textural structure but also on surface functional groups. The adsorption of multi-ring sulfur compounds on carbon materials was found to obey the Langmuir isotherm. On the basis of adsorption tests and the characterization of carbon materials by BET and XPS, the oxygen-containing functional groups on the surface appear to play an important role in increasing sulfur-adsorption capacity. The adsorption-selectivity trend of the carbon materials for various compounds increases in the order of BT < naphthalene < 2-methylnaphthalene < DBT < 4-MDBT < 4,6-DMDBT, regardless of carbon material types. This selectivity trend for sulfur compounds is dramatically different and almost opposite from that previously observed for adsorption over nickel-based adsorbents. The regeneration of spent activated carbons was also conducted by solvent washing. The high-adsorption capacity and selectivity for methyl DBTs indicate that certain activated carbons are promising adsorbents for selective adsorption for removing sulfur (SARS) as a new approach to ultra deep desulfurization of diesel fuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA