Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663698

RESUMEN

The patterning and ossification of the mammalian skeleton requires the coordinated actions of both intrinsic bone morphogens and extrinsic neurovascular signals, which function in a temporal and spatial fashion to control mesenchymal progenitor cell (MPC) fate. Here, we show the genetic inhibition of tropomyosin receptor kinase A (TrkA) sensory nerve innervation of the developing cranium results in premature calvarial suture closure, associated with a decrease in suture MPC proliferation and increased mineralization. In vitro, axons from peripheral afferent neurons derived from dorsal root ganglions (DRGs) of wild-type mice induce MPC proliferation in a spatially restricted manner via a soluble factor when cocultured in microfluidic chambers. Comparative spatial transcriptomic analysis of the cranial sutures in vivo confirmed a positive association between sensory axons and proliferative MPCs. SpatialTime analysis across the developing suture revealed regional-specific alterations in bone morphogenetic protein (BMP) and TGF-ß signaling pathway transcripts in response to TrkA inhibition. RNA sequencing of DRG cell bodies, following direct, axonal coculture with MPCs, confirmed the alterations in BMP/TGF-ß signaling pathway transcripts. Among these, the BMP inhibitor follistatin-like 1 (FSTL1) replicated key features of the neural-to-bone influence, including mitogenic and anti-osteogenic effects via the inhibition of BMP/TGF-ß signaling. Taken together, our results demonstrate that sensory nerve-derived signals, including FSTL1, function to coordinate cranial bone patterning by regulating MPC proliferation and differentiation in the suture mesenchyme.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Suturas Craneales/metabolismo , Sistema Nervioso/metabolismo , Transducción de Señal , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo , Animales , Ratones
2.
Mol Ther ; 28(8): 1902-1917, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32353321

RESUMEN

Severed CNS axons fail to regenerate in adult mammals and there are no effective regenerative strategies to treat patients with CNS injuries. Several genes, including phosphatase and tensin homolog (PTEN) and Krüppel-like factors, regulate intrinsic growth capacity of mature neurons. The Lin28 gene is essential for cell development and pluripotency in worms and mammals. In this study, we evaluated the role of Lin28a in regulating regenerative capacity of diverse populations of CNS neurons in adult mammals. Using a neuron-specific Thy1 promoter, we generated transgenic mice that overexpress Lin28a protein in multiple populations of projection neurons, including corticospinal tracts and retinal ganglion cells. We demonstrate that upregulation of Lin28a in transgenic mice induces significant long distance regeneration of both corticospinal axons and the optic nerve in adult mice. Importantly, overexpression of Lin28a by post-injury treatment with adeno-associated virus type 2 (AAV2) vector stimulates dramatic regeneration of descending spinal tracts and optic nerve axons after lesions. Upregulation of Lin28a also enhances activity of the Akt signaling pathway in mature CNS neurons. Therefore, Lin28a is critical for regulating growth capacity of multiple CNS neurons and may become an important molecular target for treating CNS injuries.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/genética , Nervio Óptico/metabolismo , Proteínas de Unión al ARN/genética , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Corteza Cerebral/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Ratones , Ratones Transgénicos , Neurogénesis , Neuronas/metabolismo , Nervio Óptico/patología , Regiones Promotoras Genéticas , Células Ganglionares de la Retina/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
3.
Genes Dev ; 27(13): 1473-83, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23796896

RESUMEN

Regulated gene expression determines the intrinsic ability of neurons to extend axons, and loss of such ability is the major reason for the failed axon regeneration in the mature mammalian CNS. MicroRNAs and histone modifications are key epigenetic regulators of gene expression, but their roles in mammalian axon regeneration are not well explored. Here we report microRNA-138 (miR-138) as a novel suppressor of axon regeneration and show that SIRT1, the NAD-dependent histone deacetylase, is the functional target of miR-138. Importantly, we provide the first evidence that miR-138 and SIRT1 regulate mammalian axon regeneration in vivo. Moreover, we found that SIRT1 also acts as a transcriptional repressor to suppress the expression of miR-138 in adult sensory neurons in response to peripheral nerve injury. Therefore, miR-138 and SIRT1 form a mutual negative feedback regulatory loop, which provides a novel mechanism for controlling intrinsic axon regeneration ability.


Asunto(s)
Axones/fisiología , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Regeneración/genética , Sirtuina 1/metabolismo , Animales , Células Cultivadas , Ratones , MicroARNs/genética , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Sirtuina 1/genética
4.
J Neurosci ; 39(46): 9107-9118, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31597725

RESUMEN

Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration.SIGNIFICANCE STATEMENT Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration in vivo Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/metabolismo , Regeneración Nerviosa , Nervio Óptico/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Femenino , Ratones Endogámicos C57BL
5.
Nat Chem Biol ; 13(4): 425-431, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192412

RESUMEN

Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative-feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Hipocampo/citología , Neuronas/metabolismo , Animales , Células Cultivadas , Ratas , Ratas Sprague-Dawley
6.
Genes Dev ; 25(18): 1968-81, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21937714

RESUMEN

Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Axones/enzimología , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Conos de Crecimiento/enzimología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neuronas/citología , Unión Proteica
7.
Nat Rev Neurosci ; 11(8): 539-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20648061

RESUMEN

Recent evidence suggests that glycogen synthase kinase 3 (GSK3) proteins and their upstream and downstream regulators have key roles in many fundamental processes during neurodevelopment. Disruption of GSK3 signalling adversely affects brain development and is associated with several neurodevelopmental disorders. Here, we discuss the mechanisms by which GSK3 activity is regulated in the nervous system and provide an overview of the recent advances in the understanding of how GSK3 signalling controls neurogenesis, neuronal polarization and axon growth during brain development. These recent advances suggest that GSK3 is a crucial node that mediates various cellular processes that are controlled by multiple signalling molecules--for example, disrupted in schizophrenia 1 (DISC1), partitioning defective homologue 3 (PAR3), PAR6 and Wnt proteins--that regulate neurodevelopment.


Asunto(s)
Glucógeno Sintasa Quinasa 3/fisiología , Neurogénesis/fisiología , Neuronas/enzimología , Transducción de Señal/fisiología , Animales , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/biosíntesis , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/fisiología , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Transducción de Señal/genética
8.
Biochem Biophys Res Commun ; 443(2): 743-8, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24333443

RESUMEN

Inactivation of glycogen synthase kinase 3 (GSK3) has been shown to mediate axon growth during development and regeneration. Phosphorylation of GSK3 by the kinase Akt is well known to be the major mechanism by which GSK3 is inactivated. However, whether such regulatory mechanism of GSK3 inactivation is used in neurons to control axon growth has not been directly studied. Here by using GSK3 mutant mice, in which GSK3 is insensitive to Akt-mediated inactivation, we show that sensory axons regenerate normally in vitro and in vivo after peripheral axotomy. We also find that GSK3 in sensory neurons of the mutant mice is still inactivated in response to peripheral axotomy and such inactivation is required for sensory axon regeneration. Lastly, we provide evidence that GSK3 activity is negatively regulated by PI3K signaling in the mutant mice upon peripheral axotomy, and the PI3K-GSK3 pathway is functionally required for sensory axon regeneration. Together, these results indicate that in response to peripheral nerve injury GSK3 inactivation, regulated by an alternative mechanism independent of Akt-mediated phosphorylation, controls sensory axon regeneration.


Asunto(s)
Axones/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Axones/ultraestructura , Activación Enzimática , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 108(12): 5057-62, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383151

RESUMEN

Neurons in the central nervous system (CNS) fail to regenerate axons after injuries due to the diminished intrinsic axon growth capacity of mature neurons and the hostile extrinsic environment composed of a milieu of inhibitory factors. Recent studies revealed that targeting a particular group of extracellular inhibitory factors is insufficient to trigger long-distance axon regeneration. Instead of antagonizing the growing list of impediments, tackling a common target that mediates axon growth inhibition offers an alternative strategy to promote axon regeneration. Neuronal growth cone, the machinery that derives axon extension, is the final converging target of most, if not all, growth impediments in the CNS. In this study, we aim to promote axon growth by directly targeting the growth cone. Here we report that pharmacological inhibition or genetic silencing of nonmuscle myosin II (NMII) markedly accelerates axon growth over permissive and nonpermissive substrates, including major CNS inhibitors such as chondroitin sulfate proteoglycans and myelin-associated inhibitors. We find that NMII inhibition leads to the reorganization of both actin and microtubules (MTs) in the growth cone, resulting in MT reorganization that allows rapid axon extension over inhibitory substrates. In addition to enhancing axon extension, we show that local blockade of NMII activity in axons is sufficient to trigger axons to grow across the permissive-inhibitory border. Together, our study proposes NMII and growth cone cytoskeletal components as effective targets for promoting axon regeneration.


Asunto(s)
Axones/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/biosíntesis , Regeneración/fisiología , Animales , Silenciador del Gen , Ratones , Microtúbulos/genética , Miosina Tipo II/genética , Ingeniería de Tejidos
10.
Neurosci Bull ; 40(4): 421-438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37864744

RESUMEN

Spinal cord injury (SCI) is one of the most devastating traumas, and the aberrant proliferation of astrocytes usually causes neurological deficits. However, the mechanism underlying astrocyte over-proliferation after SCI is unclear. Grin2c (glutamate ionotropic receptor type 2c) plays an essential role in cell proliferation. Our bioinformatic analysis indicated that Grin2c and Ca2+ transport functions were inhibited in astrocytes after SCI. Suppression of Grin2c stimulated astrocyte proliferation by inhibiting the Ca2+/calmodulin-dependent protein kinase 2b (CaMK2b) pathway in vitro. By screening different inflammatory factors, interleukin 1α (IL1α) was further found to inhibit Grin2c/Ca2+/CaMK2b and enhance astrocyte proliferation in an oxidative damage model. Blockade of IL1α using neutralizing antibody resulted in increased Grin2c expression and the inhibition of astrocyte proliferation post-SCI. Overall, this study suggests that IL1α promotes astrocyte proliferation by suppressing the Grin2c/Ca2+/CaMK2b pathway after SCI, revealing a novel pathological mechanism of astrocyte proliferation, and may provide potential targets for SCI repair.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Astrocitos/metabolismo , Proliferación Celular , Interleucina-1alfa/metabolismo , Médula Espinal/patología
11.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467611

RESUMEN

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Asunto(s)
Fármacos Neuroprotectores , Traumatismos del Nervio Óptico , Animales , Ratones , Comunicación Celular , Muerte Celular , Supervivencia Celular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología
12.
J Clin Invest ; 134(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015636

RESUMEN

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Asunto(s)
Axones , Traumatismos del Nervio Óptico , Animales , Ratones , Axones/metabolismo , Ganglios Espinales/metabolismo , Mamíferos , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo
13.
J Mol Cell Biol ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38059848

RESUMEN

Glycogen synthase kinase 3 (GSK3) signaling plays important and broad roles in regulating neural development in vitro and in vivo. Here, we reviewed recent findings of GSK3-regulated axon regeneration in vivo in both the peripheral and central nervous systems and discussed a few controversial findings in the field. Overall, current evidence indicates that GSK3ß signaling serves as an important downstream mediator of the PI3K-AKT pathway to regulate axon regeneration in parallel with the mTORC1 pathway. Specifically, the mTORC1 pathway supports axon regeneration mainly through its role in regulating cap-dependent protein translation, whereas GSK3ß signaling might be involved in regulating N6-methyladenosine (m6A) mRNA methylation-mediated cap-independent protein translation. In addition, GSK3 signaling also plays key roles in reshaping the neuronal transcriptomic landscape during neural regeneration. Finally, we proposed some research directions to further elucidate the molecular mechanisms underlying the regulatory function of GSK3 signaling and discover novel GSK3 signaling-related therapeutic targets. Together, we hope to provide an updated and insightful overview of how GSK3 signaling regulates neural regeneration in vivo.

14.
bioRxiv ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37502873

RESUMEN

The progressive death of mature neurons often results in neurodegenerative diseases. While the previous studies have mostly focused on identifying intrinsic mechanisms controlling neuronal survival, the extracellular environment also plays a critical role in regulating cell viability. Here we explore how intercellular communication contributes to the survival of retinal ganglion cells (RGCs) following the optic nerve crush (ONC). Although the direct effect of the ONC is restricted to the RGCs, we observed transcriptomic responses in other retinal cells to the injury based on the single-cell RNA-seq, with astrocytes and Müller glia having the most interactions with RGCs. By comparing the RGC subclasses with distinct resilience to ONC-induced cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with other retinal cells, suggesting that these RGCs are intrinsically programmed to foster more communication with their surroundings. Furthermore, we identified the top 47 interactions that are stronger in the high-survival RGCs, likely representing neuroprotective interactions. We performed functional assays on one of the receptors, µ-opioid receptor (Oprm1), a receptor known to play roles in regulating pain, reward, and addictive behavior. Although Oprm1 is preferentially expressed in intrinsically photosensitive retinal ganglion cells (ipRGC), its neuroprotective effect could be transferred to multiple RGC subclasses by selectively overexpressing Oprm1 in pan-RGCs in ONC, excitotoxicity, and glaucoma models. Lastly, manipulating Oprm1 activity improved visual functions or altered pupillary light response in mice. Our study provides an atlas of cell-cell interactions in intact and post-ONC retina, and a strategy to predict molecular mechanisms controlling neuroprotection, underlying the principal role played by extracellular environment in supporting neuron survival.

15.
Cell Death Dis ; 14(7): 479, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507386

RESUMEN

Activation of endogenous neural stem cells (NSCs) is greatly significant for the adult neurogenesis; however, it is extremely limited in the spinal cord after injury. Recent evidence suggests that accumulation of protein aggregates impairs the ability of quiescent NSCs to activate. Ubiquitin c-terminal hydrolase l-1 (UCHL1), an important deubiquitinating enzyme, plays critical roles in protein aggregations clearance, but its effects on NSC activation remains unknown. Here, we show that UCHL1 promotes NSC activation by clearing protein aggregates through ubiquitin-proteasome approach. Upregulation of UCHL1 facilitated the proliferation of spinal cord NSCs after spinal cord injury (SCI). Based on protein microarray analysis of SCI cerebrospinal fluid, it is further revealed that C3+ neurotoxic reactive astrocytes negatively regulated UCHL1 and proteasome activity via C3/C3aR signaling, led to increased abundances of protein aggregations and decreased NSC proliferation. Furthermore, blockade of reactive astrocytes or C3/C3aR pathway enhanced NSC activation post-SCI by reserving UCHL1 and proteasome functions. Together, this study elucidated a mechanism regulating NSC activation in the adult spinal cord involving the UCHL1-proteasome approach, which may provide potential molecular targets and new insights for NSC fate regulation.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Agregado de Proteínas , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Diferenciación Celular/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo
16.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745499

RESUMEN

Neurons in the mammalian central nervous system (CNS) gradually lose their intrinsic regeneration capacity during maturation mainly because of altered transcription profile. Recent studies have made great progress by identifying genes that can be manipulated to enhance CNS regeneration. However, as a complex process involving many genes and signaling networks, it is of great importance to deciphering the underlying neuronal chromatin and transcriptomic landscape coordinating CNS regeneration. Here we identify UTX, an X-chromosome associated gene encoding a histone demethylase, as a novel regulator of mammalian neural regeneration. We demonstrate that UTX acts as a repressor of spontaneous axon regeneration in the peripheral nerve system (PNS). In the CNS, either knocking out or pharmacological inhibiting UTX in retinal ganglion cells (RGCs) leads to significantly enhanced neuronal survival and optic nerve regeneration. RNA-seq profiling revealed that deleting UTX switches the RGC transcriptomics into a developmental-like state. Moreover, microRNA-124, one of the most abundant microRNAs in mature neurons, is identified as a downstream target of UTX and blocking endogenous microRNA124-5p results in robust optic nerve regeneration. These findings revealed a novel histone modification-microRNA epigenetic signaling network orchestrating transcriptomic landscape supporting CNS neural regeneration.

17.
Neurosci Bull ; 39(10): 1512-1532, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37326884

RESUMEN

The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Plasticidad Neuronal , Neuronas , Animales , Ratones , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histona Metiltransferasas/metabolismo , Histonas/genética , Morfogénesis , Neuronas/metabolismo
19.
Prog Neurobiol ; 214: 102284, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533809

RESUMEN

Neurons in the central nervous system (CNS) are terminally differentiated cells that gradually lose their ability to support regeneration during maturation due to changes in transcriptomic and chromatin landscape. Similar transcriptomic changes also occur during development when stem cells differentiate into different types of somatic cells. Importantly, differentiated cells can be reprogrammed back to induced pluripotent stems cells (iPSCs) via global epigenetic remodeling by combined overexpression of pluripotent reprogramming factors, including Oct4, Sox2, Klf4, c-Myc, Nanog, and/or Lin28. Moreover, recent findings showed that many proneural transcription factors were able to convert non-neural somatic cells into neurons bypassing the pluripotent stage via direct reprogramming. Interestingly, many of these factors have recently been identified as key regulators of CNS neural regeneration. Recent studies indicated that these factors could rejuvenate mature CNS neurons back to a younger state through cellular state reprogramming, thus favoring regeneration. Here we will review some recent findings regarding the roles of genetic cellular state reprogramming in regulation of neural regeneration and explore the potential underlying molecular mechanisms. Moreover, by using newly emerging techniques, such as multiomics sequencing with big data analysis and Crispr-based gene editing, we will discuss future research directions focusing on better revealing cellular state reprogramming-induced remodeling of chromatin landscape and potential translational application.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Adolescente , Diferenciación Celular , Cromatina , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas
20.
Elife ; 112022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264609

RESUMEN

Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons may play different roles in nerve regeneration and pain. However, details about their transcriptomic changes under neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain, and we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons on day 7 post-CCI. By using PirtEGFPf mice that selectively express an enhanced green fluorescent protein in DRG neurons, we established a highly efficient purification process to enrich neurons for scRNA-seq. We observed the emergence of four prominent CCI-induced clusters and a loss of marker genes in injured neurons. Importantly, a portion of injured neurons from several clusters were spared from injury-induced identity loss, suggesting subtype-specific transcriptomic changes in injured neurons. Moreover, uninjured neurons, which are necessary for mediating the evoked pain, also demonstrated cell-type-specific transcriptomic perturbations in these clusters, but not in others. Notably, male and female mice showed differential transcriptomic changes in multiple neuronal clusters after CCI, suggesting transcriptomic sexual dimorphism in DRG neurons after nerve injury. Using Fgf3 as a proof-of-principle, RNAscope study provided further evidence of increased Fgf3 in injured neurons after CCI, supporting scRNA-seq analysis, and calcium imaging study unraveled a functional role of Fgf3 in neuronal excitability. These findings may contribute to the identification of new target genes and the development of DRG neuron cell-type-specific therapies for optimizing neuropathic pain treatment and nerve regeneration.


Asunto(s)
Neuralgia , ARN Citoplasmático Pequeño , Ratas , Ratones , Masculino , Femenino , Animales , Ganglios Espinales/metabolismo , Transcriptoma , Análisis de la Célula Individual , Calcio/metabolismo , Ratas Sprague-Dawley , Neuralgia/metabolismo , Neuronas/metabolismo , Hiperalgesia/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA