Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 510(7504): 293-297, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24805245

RESUMEN

Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks to avoid stalling of the replication machinery and consequent genomic instability. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a ß-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.


Asunto(s)
ADN Helicasas/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/ultraestructura , ADN Polimerasa I/química , ADN Polimerasa I/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Microscopía Electrónica , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Mol Cell ; 38(2): 179-90, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417597

RESUMEN

In higher eukaryotes, up to 70% of genes have high levels of nonmethylated cytosine/guanine base pairs (CpGs) surrounding promoters and gene regulatory units. These features, called CpG islands, were identified over 20 years ago, but there remains little mechanistic evidence to suggest how these enigmatic elements contribute to promoter function, except that they are refractory to epigenetic silencing by DNA methylation. Here we show that CpG islands directly recruit the H3K36-specific lysine demethylase enzyme KDM2A. Nucleation of KDM2A at these elements results in removal of H3K36 methylation, creating CpG island chromatin that is uniquely depleted of this modification. KDM2A utilizes a zinc finger CxxC (ZF-CxxC) domain that preferentially recognizes nonmethylated CpG DNA, and binding is blocked when the CpG DNA is methylated, thus constraining KDM2A to nonmethylated CpG islands. These data expose a straightforward mechanism through which KDM2A delineates a unique architecture that differentiates CpG island chromatin from bulk chromatin.


Asunto(s)
Islas de CpG/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box , Histonas/química , Humanos , Histona Demetilasas con Dominio de Jumonji , Lisina/química , Datos de Secuencia Molecular , Mutación , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
3.
Nucleic Acids Res ; 40(4): e32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22156374

RESUMEN

Across vertebrate genomes methylation of cytosine residues within the context of CpG dinucleotides is a pervasive epigenetic mark that can impact gene expression and has been implicated in various developmental and disease-associated processes. Several biochemical approaches exist to profile DNA methylation, but recently an alternative approach based on profiling non-methylated CpGs was developed. This technique, called CxxC affinity purification (CAP), uses a ZF-CxxC (CxxC) domain to specifically capture DNA containing clusters of non-methylated CpGs. Here we describe a new CAP approach, called biotinylated CAP (Bio-CAP), which eliminates the requirement for specialized equipment while dramatically improving and simplifying the CxxC-based DNA affinity purification. Importantly, this approach isolates non-methylated DNA in a manner that is directly proportional to the density of non-methylated CpGs, and discriminates non-methylated CpGs from both methylated and hydroxymethylated CpGs. Unlike conventional CAP, Bio-CAP can be applied to nanogram quantities of genomic DNA and in a magnetic format is amenable to efficient parallel processing of samples. Furthermore, Bio-CAP can be applied to genome-wide profiling of non-methylated DNA with relatively small amounts of input material. Therefore, Bio-CAP is a simple and streamlined approach for characterizing regions of the non-methylated DNA, whether at specific target regions or genome wide.


Asunto(s)
Cromatografía de Afinidad/métodos , Islas de CpG , Metilación de ADN , Biotinilación , ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Dedos de Zinc
4.
Mol Cell Biol ; 32(2): 479-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083960

RESUMEN

Up to 70% of human genes are associated with regions of nonmethylated DNA called CpG islands (S. Saxonov, P. Berg, and D. L. Brutlag, Proc. Natl. Acad. Sci. U. S. A. 103:1412-1417, 2006). Usually associated with the 5' end of genes, CpG islands are thought to impact gene expression. We previously demonstrated that the histone demethylase KDM2A is specifically recruited to CpG islands to define a unique chromatin architecture and highlight gene regulatory regions in large and complex mammalian genomes. This targeting relies on a zinc finger CXXC DNA binding domain (ZF-CXXC), but how this demethylase interfaces with CpG island chromatin in vivo remains unknown. Here we demonstrate, using defined chromatin templates in vitro and chromatin profiling in vivo, that nucleosomes are a major barrier to KDM2A binding and that CpG islands are directly interpreted by the ZF-CXXC domain through specific interaction with linker DNA. Furthermore, KDM2A appears to be constrained to CpG islands not only by their nonmethylated state but also by a combination of methylated DNA and nucleosome occlusion elsewhere in the genome. Our observations suggest that both DNA sequence and chromatin structure are defining factors in interpreting CpG island chromatin and translation of the CpG signal. More generally, these features of CpG island recognition suggest that chromatin structure and accessibility play a major role in defining how transcription factors recognize DNA and regulatory elements genome-wide.


Asunto(s)
Cromatina/metabolismo , Islas de CpG , ADN/metabolismo , Histona Demetilasas/metabolismo , Secuencia de Aminoácidos , Animales , Histona Demetilasas/química , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Xenopus , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA