Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 19(2): 203-211, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31792425

RESUMEN

Assemblies of metal oxide nanowires in 3D stacks can enable the realization of nanodevices with tailored conductivity, porous structure and a high surface area. Current fabrication methods require complicated multistep procedures that involve the initial preparation of nanowires followed by manual assembly or transfer printing, and thus lack synthesis flexibility and controllability. Here we report a general synthetic orthogonal assembly approach to controllably construct 3D multilayer-crossed metal oxide nanowire arrays. Taking tungsten oxide semiconducting nanowires as an example, we show the spontaneous orthogonal packing of composite nanorods of poly(ethylene oxide)-block-polystyrene and silicotungstic acid; the following calcination gives rise to 3D cross-stacked nanowire arrays of Si-doped metastable ε-phase WO3. This nanowire stack framework was also tested as a gas detector for the selective sensing of acetone. By using other polyoxometallates, this fabrication method for woodpile-like 3D nanostructures can also be generalized to different doped metal oxide nanowires, which provides a way to manipulate their physical properties for various applications.

2.
Chem Soc Rev ; 49(4): 1173-1208, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-31967137

RESUMEN

Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.

3.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208563

RESUMEN

Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = -1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.


Asunto(s)
Fosfatos de Calcio , Materiales Biocompatibles Revestidos , Campos Electromagnéticos , Osteogénesis , Poliésteres , Polivinilos , Andamios del Tejido , Regeneración Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Expresión Génica , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Poliésteres/química , Poliésteres/farmacología , Polivinilos/química , Solventes , Ingeniería de Tejidos , Difracción de Rayos X
4.
Small ; 16(46): e2004772, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107204

RESUMEN

Semiconducting metal oxides-based gas sensors with the capability to detect trace gases at low operating temperatures are highly desired in applications such as wearable devices, trace pollutant detection, and exhaled breath analysis, but it still remains a great challenge to realize this goal. Herein, a multi-component co-assembly method in combination with pore engineering strategy is proposed. By using bi-functional (3-mercaptopropyl) trimethoxysilane (MPTMS) that can co-hydrolyze with transition metal salt and meanwhile coordinate with gold precursor during their co-assembly with PEO-b-PS copolymers, ordered mesoporous SiO2 -WO3 composites with highly dispersed Au nanoparticles of 5 nm (mesoporous SiO2 -WO3 /Au) are straightforward synthesized. This multi-component co-assembly process avoids the aggregation of Au nanoparticles and pore blocking in conventional post-loading method. Furthermore, through controlled etching treatment, a small portion of silica can be removed from the pore wall, resulting in mesoporous SiO2 -WO3 /Au with increased specific surface area (129 m2  g-1 ), significantly improved pore connectivity, and enlarged pore window (>4.3 nm). Thanks to the presence of well-confined Au nanoparticles and ε-WO3 , the mesoporous SiO2 -WO3 /Au based gas sensors exhibit excellent sensing performance toward ethanol with high sensitivity (Ra /Rg = 2-14 to 50-250 ppb) at low operating temperature (150 °C).

5.
Acc Chem Res ; 52(3): 714-725, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30829473

RESUMEN

In recent years, rational design of ordered mesoporous metal oxides, especially metal oxide semiconductors with adjustable pore architecture and framework compositions, has aroused extensive research interest owing to their unique electronic structures, long-range ordered porous framework, uniform mesopore size, and high specific surface area. Research on mesoporous materials has been booming in the past 30 years, and many synthesis methods have been developed, such as templating methods based on amphiphilic copolymers as soft templates or mesoporous carbon/silica as hard templates, respectively. Soft-templating synthesis has been considered as one of the most efficient and flexible methods in designing ordered mesoporous materials through the controllable interfacial induced coassembly process. However, most commercial amphiphilic copolymers, such as poly(ethylene oxide)- b-poly(propylene oxide) based Pluronic-type ones, suffer the drawback of poor thermal stability, because they are too easy to be decomposed even in inert atmosphere. Therefore, they are difficult to support the structures of mesoporous metal oxides under high calcination temperatures (>400 °C). To solve this challenge, we designed new amphiphilic block copolymers with high content of sp2-hybridized carbon in the hydrophobic segments that were relatively stable and could be in situ converted into residual carbon to support the mesoporous structure, via living free radical polymerization. We developed a variety of novel synthesis methods based on sp2-hybridized carbon-containing block copolymer, such as ligand-assisted assembly and resol-assisted assembly strategies, achieving a controllable and versatile synthesis of mesoporous semiconducting metal oxides with excellent gas sensing performance. In this Account, we first outline the features of sp2-hybridized carbon-containing block copolymers synthesized via living free radical polymerization, particularly their pyrolysis behavior in converting into residual carbon. Combining the solvent evaporation induced coassembly and the carbon-supported crystallization strategies, we realized the rational design of various ordered mesoporous semiconducting metal oxides (e.g., WO3, SnO2, Co3O4, In2O3, TiO2, ZnO) and the regulation of their architectural features. To overcome the fast hydrolysis rate of metal precursors and weak interaction between block copolymers and metal precursors, we developed efficient ligand-assisted (e.g., acetylacetone and acetic acid) coassembly and resol-assisted coassembly methods to retard hydrolysis behavior and enhance the interaction via hydrogen bonds, covalent bonds, electrostatic interactions, etc. We also highlight the applications of these ordered mesoporous semiconducting metal oxides of both n-type and p-type in gas sensing fields, and they show tremendous sensing performance due to their abundant active sites on electron depletion layer and rapid gas diffusion via accessible pore channels. Finally, on the basis of the classic surface-electron depletion layer model, we elucidated in depth the surface catalytic reactions between the target gas molecules and the activated species (e.g., the adsorbed oxygen species) in the surface of mesoporous metal oxides during sensing process. These newly developed soft-templating synthesis methods that rely on sp2-hybridized carbon-containing block copolymers will open a new avenue for the design and application of ordered mesoporous semiconducting metal oxides in various fields.

6.
Appl Microbiol Biotechnol ; 104(18): 7901-7913, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32715361

RESUMEN

Ribonucleic acid (RNA) and its degradation products are widely used in the food industry. In this study, we constructed Saccharomyces cerevisiae mutants with FHL1, IFH1, SSF1, and SSF2 overexpression and HRP1 deletion, individually to evaluate the effect on RNA production. The RNA content of recombinant strains W303-1a-FHL1, W303-1a-SSF2, and W303-1a-ΔHRP1 was increased by 14.94%, 24.4%, and 19.36%, respectively, compared with the RNA content of the parent strain. However, W303-1a-IFH1 and W303-1a-SSF1 showed no significant change in RNA production compared with the parent strain. IFH1 and FHL1 encode Ifh1p and Fhl1p, respectively, which combine to form a complex that plays a key role in the transcription of the ribosomal protein (RP) gene. Ssf2p, encoded by SSF2, plays an important role in ribosome biosynthesis and Hrp1p is a negative regulator of cell growth in S. cerevisiae. Subsequently, a high RNA production strain, W112, was constructed by simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1. The RNA content of W112 was 38.8% higher than the parent strain. The growth performance, RP transcription levels, and rRNA content were also investigated in the recombinant strains. This study provides a new strategy for the construction of S. cerevisiae strains containing large amounts of RNA, and it will make a significant contribution to progress in the nucleic acid industry. KEY POINTS: • Simultaneously overexpressing FHL1, IFH1, and SSF2 and deleting HRP1 can significantly increases RNA production. • The production of RNA increased by 38.8% in Saccharomyces cerevisiae. • The cell size and growth rate of the strains with higher RNA content also increased.


Asunto(s)
Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transactivadores , Factores de Escisión y Poliadenilación de ARNm , Factores de Transcripción Forkhead/metabolismo , Regulación Fúngica de la Expresión Génica , ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transcripción Genética
7.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255882

RESUMEN

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide-polymer composites.

8.
Small ; 15(46): e1904240, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31550086

RESUMEN

Controllable and efficient synthesis of noble metal/transition-metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane-assisted one-pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated-free noble metal nanoparticles, including Au/WO3 , Au/TiO2 , Au/NbOx , and Pt/WO3 . 3-mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2 PtCl4 ) by mercapto (SH) groups, resulting in coassembly with poly(ethylene oxide)-b-polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14-20 nm), high specific surface area (61-138 m2 g-1 ), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3 , in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε-phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair /Rgas = 36-50 ppm of ethanol), high selectivity, and excellent low-concentration detection capability (down to 50 ppb) at low working temperature (200 °C).

9.
Soft Matter ; 14(28): 5847-5855, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29957819

RESUMEN

Azo molecular glass (IAC-4) microspheres with a monodispersed diameter over ten microns were fabricated by microfluidics and unique shape manipulation was achieved based on their fascinating photoinduced deformation behaviour. After irradiation with a polarized laser beam (λ = 488 nm), the IAC-4 microspheres were transformed into uniform mushroom-like particles, and their three-dimensional (3D) asymmetric shapes were precisely manipulated by adjusting the irradiation time and the polarization state of light. By observing the particle morphology in three orthogonal views (top view, front view and side view) by scanning electron microscopy (SEM), the photoinduced deformation behaviour of the ten-micron-sized particles was comprehensively revealed in the 3D space for the first time. It was observed that the photoinduced deformation asymmetrically occurred on the upper part of the microspheres due to the strong optical absorption of the azo chromophores. Besides, the deformation manner of the upper part was decided by the direction of the electric vibration of the refracted light. This work not only depicts a clear picture of the photoinduced deformation behaviour of the ten-micron-sized azo particles upon polarized light irradiation, but also provides a new method to controllably manipulate the particle shape from spheres to complex 3D architectures.

10.
Angew Chem Int Ed Engl ; 56(47): 14847-14852, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28960725

RESUMEN

Lithium-ion batteries (LIBs) are primary energy storage devices to power consumer electronics and electric vehicles, but their capacity is dramatically decreased at ultrahigh charging/discharging rates. This mainly originates from a high Li-ion/electron transport barrier within a traditional electrode, resulting in reaction polarization issues. To address this limitation, a functionally layer-graded electrode was designed and fabricated to decrease the charge carrier transport barrier within the electrode. As a proof-of-concept, functionally layer-graded electrodes composing of TiO2 (B) and reduced graphene oxide (RGO) exhibit a remarkable capacity of 128 mAh g-1 at a high charging/discharging rate of 20 C (6.7 A g-1 ), which is much higher than that of a traditionally homogeneous electrode (74 mAh g-1 ) with the same composition. This is evidenced by the improvement of effective Li ion diffusivity as well as electronic conductivity in the functionally layer-graded electrodes.

11.
Br J Educ Psychol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898585

RESUMEN

BACKGROUND: The importance of parent-teacher relationships has been well-discussed in Western contexts. It's still unclear whether and how parent-teacher relationships affect students' academic development, especially in the context of China's uneven development between urban and suburban areas. AIMS: This study examined the urban-suburban differences in the influence of the parent-teacher relationships on students' learning engagement during the last 3 years of primary school to contribute to related policy and practice. SAMPLE AND METHODS: Data were collected annually during the summer period in three waves from Grades 4 to 6. The sample included 1408 students (Mage = 10.35, SD = .48; 49.1% boys) paired with their mothers (Mage = 38.82, SD = 3.54), with 643 pairs from urban areas and 765 pairs from suburban areas in China. In each wave, the parents reported the frequency of contact with their child's teacher during the previous school year as well as the quality of their relationship, and the students reported their learning engagement. Latent growth models were used to examine the hypotheses. RESULTS: A statistically significant decline in learning engagement was seen only in suburban students, while the parent-teacher relationships seemed to increase for both suburban and urban participants. Latent growth modelling showed that the increasing levels of relationship quality reduced the decline in the suburban students' learning engagement, although the contact between parents and teachers did not play such a positive role for both urban and suburban students. CONCLUSIONS: The findings reveal a compensatory effect of the quality of the parent-teacher relationship on suburban students' learning engagement. Considering the difference in students' learning engagement between urban and suburban students, increased effort on high-quality parent-teacher relationships for suburban students is required to better support their academic development.

12.
J Back Musculoskelet Rehabil ; 37(1): 137-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37840481

RESUMEN

BACKGROUND: Muscle imbalance has long been recognized as one of the possible pathogeneses for adolescent idiopathic scoliosis (AIS). PIEZO2, the susceptibility gene of AIS, has been identified to play an important role in neuromuscular activities. OBJECTIVE: This study aims to compare the mRNA expression of PIEZO2 between concave and convex paraspinal muscles of AIS patients and to identify the relationship between the ratio of PIEZO2 expression and curve magnitude. METHODS: Twenty female AIS patients (right thoracic curve) who underwent spinal correction surgery were divided into moderate (n= 12) and severe (⩾ 70 degrees) curve groups (n= 8). The morphology of the paraspinal muscles was assessed with spinal MRI. Multifidus specimens were collected during surgical operations from the concave and convex sides of the apical region, and mRNA expression of the PIEZO2 gene was compared between sides. The localization of PIEZO2 protein expression was confirmed with the markers PAX7 and PAX3, and the percentage of PIEZO2+ cells was also investigated. RESULTS: In the moderate curve group, fatty infiltration in the deep paraspinal muscle was significantly higher on the concave side than on the convex side. There were no differences in deep muscle area, superficial muscle area, or fatty infiltration of superficial paraspinal muscle. The mRNA expression of PIEZO2 was significantly increased on the concave side, and the asymmetric expression predominantly occurred in moderate curves rather than severe ones. PIEZO2 was expressed on satellite cells instead of fibers of the muscle spindle. The percent of PIEZO2+PAX7+ cells in myofibers was significantly higher on the concave side in the moderate curve group, but not in the severe curve group. CONCLUSIONS: Asymmetric morphological changes occur in the deep paraspinal muscles of AIS. The PIEZO2 is asymmetrically expressed in the multifidus muscle and is preferentially expressed in satellite cells.


Asunto(s)
Cifosis , Escoliosis , Humanos , Adolescente , Femenino , Escoliosis/genética , Músculos Paraespinales/metabolismo , Columna Vertebral , ARN Mensajero/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119782, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871225

RESUMEN

Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the circadian clock genes and is considered to be a fundamental regulatory gene in the circadian rhythm, responsible for mediating several biological processes. Therefore, abnormal expression of CLOCK affects its role in the circadian clock and its more general function as a direct regulator of gene expression. This dysfunction can lead to severe pathological effects, including cancer. To better understand the role of CLOCK in cancer, we compiled this review to describe the biological function of CLOCK, and especially highlighted its function in cancer development, progression, tumor microenvironment, cancer cell metabolism, and drug resistance.

14.
Sci Adv ; 10(18): eadj8395, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701213

RESUMEN

The development of radiation-tolerant structural materials is an essential element for the success of advanced nuclear energy concepts. A proven strategy to increase radiation resistance is to create microstructures with a high density of internal defect sinks, such as grain boundaries (GBs). However, as GBs absorb defects, they undergo internal transformations that limit their ability to capture defects indefinitely. Here, we show that, as the sink efficiency of GBs becomes exhausted with increasing irradiation dose, networks of irradiation loops form in the vicinity of saturated or near-saturated GB, maintaining and even increasing their capacity to continue absorbing defects. The formation of these networks fundamentally changes the driving force for defect absorption at GB, from "chemical" to "elastic." Using thermally-activated dislocation dynamics simulations, we show that these networks are consistent with experimental measurements of defect densities near GB. Our results point to these networks as a natural continuation of the GB once they exhaust their internal defect absorption capacity.

15.
Adv Mater ; : e2404696, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923035

RESUMEN

Soft robots adapt to complex environments for autonomous locomotion, manipulation, and perception are attractive for robot-environment interactions. Strategies to reconcile environment-triggered actuation and self-powered sensing responses to different stimuli remain challenging. By tuning the in situ vapor phase solvent exchange effect in continuous electrospinning, an asymmetric highly-aligned all-fiber membrane (HAFM) with a hierarchical "grape-like" nanosphere-assembled microfiber structure (specific surface area of 13.6 m2 g-1) and excellent mechanical toughness (tensile stress of 5.5 MPa, and fracture toughness of 798 KJ m-3) is developed, which shows efficient asymmetric actuation to both photothermal and humidity stimuli. The HAFM consists of a metal-organic framework (MOF)-enhanced moisture-responsive layer and an MXene-improved photothermal-responsive layer, which achieves substantial actuation with a bending curvature up to ≈7.23 cm-1 and a fast response of 0.60 cm-1 s-1. By tailoring the fiber alignment and bi-layer thickness ratio, different types of micromanipulators, automatic walking robots, and plant robots with programmable structures are demonstrated, which are realized for self-powered information perception of material type, object moisture, and temperature by integrating the autonomous triboelectric effect induced by photothermal-moisture actuation. This work presents fiber materials with programable hierarchical asymmetries and inspires a common strategy for self-powered organism-interface robots to interact with complex environments.

16.
Adv Sci (Weinh) ; 11(25): e2402196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650164

RESUMEN

Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.


Asunto(s)
Textiles , Animales , Nanofibras/química , Órganos Artificiales , Lana/química , Celulosa/química , Dispositivos Electrónicos Vestibles
17.
Adv Mater ; : e2307963, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971199

RESUMEN

Soft grippers are essential for precise and gentle handling of delicate, fragile, and easy-to-break objects, such as glassware, electronic components, food items, and biological samples, without causing any damage or deformation. This is especially important in industries such as healthcare, manufacturing, agriculture, food handling, and biomedical, where accuracy, safety, and preservation of the objects being handled are critical. This article reviews the use of 3D printing technologies in soft grippers, including those made of functional materials, nonfunctional materials, and those with sensors. 3D printing processes that can be used to fabricate each class of soft grippers are discussed. Available 3D printing technologies that are often used in soft grippers are primarily extrusion-based printing (fused deposition modeling and direct ink writing), jet-based printing (polymer jet), and immersion printing (stereolithography and digital light processing). The materials selected for fabricating soft grippers include thermoplastic polymers, UV-curable polymers, polymer gels, soft conductive composites, and hydrogels. It is conclude that 3D printing technologies revolutionize the way soft grippers are being fabricated, expanding their application domains and reducing the difficulties in customization, fabrication, and production.

18.
ACS Nano ; 17(18): 17920-17930, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668183

RESUMEN

Autonomous object manipulation and perception with environmental factor-triggered and self-powered actuation is one of the most attractive directions for developing next-generation soft robotics with a smart human-machine-environment interface. Humidity, as a sustainable energy source ubiquitous in the surrounding environment, can be used for triggering smart grippers. In this work, it is proposed that by contacts between the gripper and objects upon humidity-induced actuation, real-time distinguishable triboelectric signals can be generated to realize the humidity-driven object manipulation and identification. Herein, a thermo-modified electrospun polyvinylpyrrolidone/poly(acrylic acid)/MIL-88A (T-PPM) nanofibrous film with micro-to-nano cross-scale porosity is developed, and a bilayer humidity-responsive actuator (T-HRA) was designed, mimicking the tamariskoid spikemoss to enhance the humidity-driven actuation. The breathing effect of MIL-88A and hierarchical porous structure of the T-PPM facilitate moisture diffusion and offer huge actuation (2.41 cm-1) with a fast response (0.084 cm-1 s-1). For autonomous object manipulation perception, T-PPM was verified as a tribo-positive material located between paper and silk. Accordingly, the T-HRA was demonstrated as a smart soft gripper that generates a different electric signal upon contact with objects of different material. This work proposes a concept of soft robots that are interactive with the environment for both autonomous object manipulation and information acquisition.

19.
Front Pharmacol ; 14: 1154135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188263

RESUMEN

With the increase in human lifespan and the aggravation of global aging, the incidence of osteoarthritis (OA) is increasing annually. To better manage and control the progression of OA, prompt diagnosis and treatment for early-stage OA are important. However, a sensitive diagnostic modality and therapy for early OA have not been well developed. The exosome is a class of extracellular vesicles containing bioactive substances, that can be delivered directly from original cells to neighboring cells to modulate cellular activities through intercellular communication. In recent years, exosomes have been considered important in the early diagnosis and treatment of OA. Synovial fluid exosome and its encapsulated substances, e.g., microRNA, lncRNA, and proteins, can not only distinguish OA stages but also prevent the progression of OA by directly targeting cartilage or indirectly modulating the immune microenvironment in the joints. In this mini-review, we include recent studies on the diagnostic and therapeutic modalities of exosomes and hope to provide a new direction for the early diagnosis and treatment of OA disease in the future.

20.
Adv Mater ; 35(31): e2302815, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37272692

RESUMEN

The tribovoltaic nanogenerator (TVNG), a promising semiconductor energy technology, displays outstanding advantages such as low matching impedance and continuous direct-current output. However, the lack of controllable and stable performance modulation strategies is still a major bottleneck that impedes further practical applications of TVNG. Herein, by leveraging the ferroelectricity-enhanced mechanism and the control of interfacial energy band bending, a lead-free perovskite-based (3,3-difluorocyclobutylammonium)2 CuCl4 ((DF-CBA)2 CuCl4 )/Al Schottky junction TVNG is constructed. The multiaxial ferroelectricity of (DF-CBA)2 CuCl4 enables an excellent surface charge modulating capacity, realizing a high work function regulation of ≈0.7 eV and over 15-fold current regulation (from 6 to 93 µA) via an electrical poling control. The controllable electrical poling leads to elevated work function difference between the Al electrode and (DF-CBA)2 CuCl4 compared to traditional semiconductors and halide perovskites, which creates a stronger built-in electric field at the Schottky interface to enhance the electrical output. This TVNG device exhibits outstanding flexibility and long-term stability (>20 000 cycles) that can endure extreme mechanical deformations, and can also be used in a capsule-like magnetic suspension device capable of detecting vibration and weights of different objects as well as harvesting energy from human motions and water waves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA