Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956558

RESUMEN

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , Femenino , Neoplasias de la Mama/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Persona de Mediana Edad , Proliferación Celular/genética
2.
Ann Bot ; 132(5): 949-962, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738171

RESUMEN

BACKGROUND AND AIMS: Chromosome evolution leads to hybrid dysfunction and recombination patterns and has thus been proposed as a major driver of diversification in all branches of the tree of life, including flowering plants. In this study we used the genus Linum (flax species) to evaluate the effects of chromosomal evolution on diversification rates and on traits that are important for sexual reproduction. Linum is a useful study group because it has considerable reproductive polymorphism (heterostyly) and chromosomal variation (n = 6-36) and a complex pattern of biogeographical distribution. METHODS: We tested several traditional hypotheses of chromosomal evolution. We analysed changes in chromosome number across the phylogenetic tree (ChromEvol model) in combination with diversification rates (ChromoSSE model), biogeographical distribution, heterostyly and habit (ChromePlus model). KEY RESULTS: Chromosome number evolved across the Linum phylogeny from an estimated ancestral chromosome number of n = 9. While there were few apparent incidences of cladogenesis through chromosome evolution, we inferred up to five chromosomal speciation events. Chromosome evolution was not related to heterostyly but did show significant relationships with habit and geographical range. Polyploidy was negatively correlated with perennial habit, as expected from the relative commonness of perennial woodiness and absence of perennial clonality in the genus. The colonization of new areas was linked to genome rearrangements (polyploidy and dysploidy), which could be associated with speciation events during the colonization process. CONCLUSIONS: Chromosome evolution is a key trait in some clades of the Linum phylogeny. Chromosome evolution directly impacts speciation and indirectly influences biogeographical processes and important plant traits.


Asunto(s)
Lino , Linaceae , Filogenia , Lino/genética , Linaceae/genética , Fitomejoramiento , Poliploidía , Cromosomas , Evolución Molecular
3.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838861

RESUMEN

This study examined the preparation of isobornyl acetate/isoborneol from camphene using an α-hydroxyl carboxylic acid (HCA) composite catalyst. Through the study of the influencing factors, it was found that HCA and boric acid exhibited significant synergistic catalysis. Under optimal conditions, when tartaric acid-boric acid was used as the catalyst, the conversion of camphene and the gas chromatography (GC) content and selectivity of isobornyl acetate were 92.9%, 88.5%, and 95.3%, respectively. With the increase in the ratio of water to acetic acid, the GC content and selectivity of isobornol in the product increased, but the conversion of camphene decreased. The yield of isobornol was increased by adding ethyl acetate or titanium sulfate/zirconium sulfate to form a ternary composite catalyst. When a ternary complex of titanium sulfate, tartaric acid, and boric acid was used as the catalyst, the GC content of isobornol in the product reached 55.6%. Under solvent-free conditions, mandelic acid-boric acid could catalyze the hydration reaction of camphene, the GC content of isoborneol in the product reached 26.1%, and the selectivity of isoborneol was 55.9%. The HCA-boric acid composite catalyst can use aqueous acetic acid as a raw material, which is also beneficial for the reuse of the catalyst.


Asunto(s)
Ácidos Carboxílicos , Titanio , Ácidos Carboxílicos/química , Monoterpenos Bicíclicos , Agua/química , Ácido Acético , Catálisis , Sulfatos
4.
BMC Plant Biol ; 22(1): 57, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105308

RESUMEN

BACKGROUND: Elymus breviaristatus and Elymus sinosubmuticus are perennial herbs, not only morphologically similar but also sympatric distribution. The genome composition of E. sinosubmuticus has not been reported, and the relationship between E. sinosubmuticus and E. breviaristatus is still controversial. We performed artificial hybridization, genomic in situ hybridization, and phylogenetic analyses to clarify whether the two taxa were the same species. RESULTS: The high frequency bivalent (with an average of 20.62 bivalents per cell) at metaphase I of pollen mother cells of the artificial hybrids of E. breviaristatus (StYH) × E. sinosubmuticus was observed. It illustrated that E. sinosubmuticus was closely related to E. breviaristatus. Based on genomic in situ hybridization results, we confirmed that E. sinosubmuticus was an allohexaploid, and the genomic constitution was StYH. Phylogenetic analysis results also supported that this species contained St, Y, and H genomes. In their F1 hybrids, pollen activity was 53.90%, and the seed setting rate was 22.46%. Those indicated that the relationship between E. sinosubmuticus and E. breviaristatus is intersubspecific rather than interspecific, and it is reasonable to treated E. sinosubmuticus as the subspecies of E. breviaristatus. CONCLUSIONS: In all, the genomic constitutions of E. sinosubmuticus and E. breviaristatus were StYH, and they are species in the genus Campeiostachys. Because E. breviaristatus was treated as Campeistachys breviaristata, Elymus sinosubmuticus should be renamed Campeiostachys breviaristata (Keng) Y. H. Zhou, H. Q. Zhang et C. R. Yang subsp. sinosubmuticus (S. L. Chen) Y. H. Zhou, H. Q. Zhang et L. Tan.


Asunto(s)
Quimera/genética , Clasificación , Elymus/clasificación , Elymus/genética , Genoma de Planta , Hibridación Genética , Filogenia , China , Variación Genética , Especificidad de la Especie
5.
Cytogenet Genome Res ; 162(6): 334-344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36724748

RESUMEN

Natural hybridization has been frequently observed in Triticeae; however, few studies have investigated the origin of natural intergeneric Triticeae hybrids. In the present study, we discovered three putative hybrid Triticeae plants in the Western Sichuan Plateau of China. Morphologically, the putative hybrids were intermediate between Kengyilia melanthera (2n = 6x = 42; StStYYPP) and Campeiostachys dahurica var. tangutorum (2n = 6x = 42; StStYYHH) with greater plant height and tiller number. Cytological analyses demonstrated that the hybrids were hexaploid with 42 chromosomes (2n = 6x = 42). At metaphase I, 12.10-12.58 bivalents and 13.81-14.18 univalents per cell were observed in the hybrid plants. Genomic in situ hybridization demonstrated that the hybrids had StStYYHP genomes. Phylogenetic analysis of Acc1 sequences indicated that the hybrids were closely related to K. melanthera and C. dahurica var. tangutorum. Our morphological, cytological, and molecular analyses indicate that these hexaploid natural hybrid plants may be hybrids of K. melanthera and C. dahurica var. tangutorum.


Asunto(s)
Elymus , Poaceae , Poaceae/genética , Filogenia , Genoma de Planta , Análisis Citogenético , Hibridación Genética , Hibridación in Situ , Elymus/genética
6.
Mol Phylogenet Evol ; 175: 107591, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35863609

RESUMEN

Tracing evolutionary history proves challenging for polyploid groups that have evolved rapidly, especially if an ancestor of a polyploid is extinct. The Ns-containing polyploids are recognized as the NsXm and StHNsXm genomic constitutions in Triticeae. The Ns originated from Psathyrostachys, while the Xm represented a genome of unknown origin. Here, we use genetic information in plastome to trace the complex lineage history of the Ns-containing polyploid species by sampling 26 polyploids and 90 diploid taxa representing 23 basic genomes in Triticeae. Phylogenetic reconstruction, cluster plot of genetic distance matrix, and migration event demonstrated that (1) the Ns plastome originated from different Psathyrostachys species, and the Xm plastome may originate from an ancestral lineage of Henrardia, Agropyron, and Eremopyrum; (2) the Ns, Xm, and St genome donors separately served as the maternal parents during the speciation of the Ns-containing polyploid species, resulting in a maternal haplotype polymorphism; (3) North AmericanLeymusspecies might originate from colonization during late Miocene via the Bering land bridge and were the paternal donor of the StHNsXm genome Pascopyrum species. Our results shed new light on our understanding of the rich diversity and ecological adaptation of the Ns-containing polyploid species.


Asunto(s)
Poaceae , Poliploidía , Evolución Biológica , Genoma de Planta , Filogenia , Poaceae/genética , Análisis de Secuencia de ADN
7.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164391

RESUMEN

We report the use of five alpha-hydroxy acids (citric, tartaric, mandelic, lactic and glycolic acids) as catalysts in the synthesis of terpineol from alpha-pinene. The study found that the hydration rate of pinene was slow when only catalyzed by alpha-hydroxyl acids. Ternary composite catalysts, composed of AHAs, phosphoric acid, and acetic acid, had a good catalytic performance. The reaction step was hydrolysis of the intermediate terpinyl acetate, which yielded terpineol. The optimal reaction conditions were as follows: alpha-pinene, acetic acid, water, citric acid, and phosphoric acid, at a mass ratio of 1:2.5:1:(0.1-0.05):0.05, a reaction temperature of 70 °C, and a reaction time of 12-15 h. The conversion of alpha-pinene was 96%, the content of alpha-terpineol was 46.9%, and the selectivity of alpha-terpineol was 48.1%. In addition, the catalytic performance of monolayer graphene oxide and its composite catalyst with citric acid was studied, with acetic acid used as an additive.

8.
Mol Phylogenet Evol ; 149: 106838, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32304825

RESUMEN

To investigate the diploid-polyploid relationships and the role of maternal progenitors in establishment of polyploid richness in Triticeae, 35 polyploids representing almost all genomic constitutions together with 48 diploid taxa representing 20 basic genomes in the tribe were analyzed. Phylogenomic reconstruction, genetic distance matrix, and nucleotide diversity patterns of plastome sequences indicated that (1) The maternal donor of the annual polyploid species with the U- and D-genome are related to extant Ae. umbellulata and Ae. tauschii, respectively. The maternal donor to the annual polyploid species with the S-, G-, and B-genome originated from the species of Sitopsis section of the genus Aegilops. The annual species with the Xe-containing polyploids were donated by Eremopyrum as the female parent; (2) Pseudoroegneria and Psathyrostachys were the maternal donor of perennial species with the St- and Ns-containing polyploids, respectively; (3) The Lophopyrum, Thinopyrum and Dasypyrum genomes contributed cytoplasm genome to Pseudoroegneria species as a result of incomplete lineage sorting and/or chloroplast captures, and these lineages were genetically transmitted to the St-containing polyploid species via polyploidization; (4) There is a reticulate relationship among the St-containing polyploid species. It can be suggested that genetic heterogeneity might associate with the richness of the polyploids in Triticeae.


Asunto(s)
Diploidia , Evolución Molecular , Genoma de Plastidios , Poaceae/genética , Poliploidía , Secuencia de Bases , Genes de Plantas , Variación Genética , Funciones de Verosimilitud , Nucleótidos/genética , Filogenia
9.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322211

RESUMEN

The KT/HAK/KUP (HAK) family is the largest potassium (K+) transporter family in plants, which plays key roles in K+ uptake and homeostasis, stress resistance, and root and embryo development. However, the HAK family has not yet been characterized in Brassica napus. In this study, 40 putative B. napus HAK genes (BnaHAKs) are identified and divided into four groups (Groups I-III and V) on the basis of phylogenetic analysis. Gene structure analysis revealed 10 conserved intron insertion sites across different groups. Collinearity analysis demonstrated that both allopolyploidization and small-scale duplication events contributed to the large expansion of BnaHAKs. Transcription factor (TF)-binding network construction, cis-element analysis, and microRNA prediction revealed that the expression of BnaHAKs is regulated by multiple factors. Analysis of RNA-sequencing data further revealed extensive expression profiles of the BnaHAKs in groups II, III, and V, with limited expression in group I. Compared with group I, most of the BnaHAKs in groups II, III, and V were more upregulated by hormone induction based on RNA-sequencing data. Reverse transcription-quantitative polymerase reaction analysis revealed that the expression of eight BnaHAKs of groups I and V was markedly upregulated under K+-deficiency treatment. Collectively, our results provide valuable information and key candidate genes for further functional studies of BnaHAKs.


Asunto(s)
Brassica napus/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Plantas/metabolismo , Deficiencia de Potasio/genética , Potasio/metabolismo , Brassica napus/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta , Intrones , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , RNA-Seq , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
BMC Plant Biol ; 17(1): 207, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157213

RESUMEN

BACKGROUND: Elytrigia Desv. is a genus with a varied array of morphology, cytology, ecology, and distribution in Triticeae. Classification and systematic position of Elytrigia remain controversial. We used nuclear internal-transcribed spacer (nrITS) sequences and chloroplast trnL-F region to study the relationships of phylogenetic and maternal genome donor of Elytrigia Desv. sensu lato. RESULTS: (1) E, F, P, St, and W genomes bear close relationship with one another and are distant from H and Ns genomes. Ee and Eb are homoeologous. (2) In ESt genome species, E genome is the origin of diploid Elytrigia species with E genome, St genome is the origin of Pseudoroegneria. (3) Diploid species Et. elongata were differentiated. (4) Et. stipifolia and Et. varnensis sequences are diverse based on nrITS data. (5) Et. lolioides contains St and H genomes and belongs to Elymus s. l. (6) E genome diploid species in Elytrigia serve as maternal donors of E genome for Et. nodosa (PI547344), Et. farcta, Et. pontica, Et. pycnantha, Et. scirpea, and Et. scythica. At least two species act as maternal donor of allopolyploids (ESt and EStP genomes). CONCLUSIONS: Our results suggested that Elytrigia s. l. species contain different genomes, which should be divided into different genera. However, the genomes of Elytrigia species had close relationships with one another. Diploid species were differentiated, because of introgression and different geographical sources. The results also suggested that the same species and the same genomes of different species have different maternal donor. Further study of molecular biology and cytology could facilitate the evaluation of our results of phylogenetic in a more specific and accurate way.


Asunto(s)
ADN Intergénico/genética , Poaceae/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Genoma de Planta/genética , Filogenia , Análisis de Secuencia de ADN
11.
Mol Phylogenet Evol ; 114: 175-188, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28533082

RESUMEN

Leymus Hochst. (Triticeae: Poaceae), a group of allopolyploid species with the NsXm genomes, is a perennial genus with diversity in morphology, cytology, ecology, and distribution in the Triticeae. To investigate the genome origin and evolutionary history of Leymus, three unlinked low-copy nuclear genes (Acc1, Pgk1, and GBSSI) and three chloroplast regions (trnL-F, matK, and rbcL) of 32 Leymus species were analyzed with those of 36 diploid species representing 18 basic genomes in the Triticeae. The phylogenetic relationships were reconstructed using Bayesian inference, Maximum parsimony, and NeighborNet methods. A time-calibrated phylogeny was generated to estimate the evolutionary history of Leymus. The results suggest that reticulate evolution has occurred in Leymus species, with several distinct progenitors contributing to the Leymus. The molecular data in resolution of the Xm-genome lineage resulted in two apparently contradictory results, with one placing the Xm-genome lineage as closely related to the P/F genome and the other splitting the Xm-genome lineage as sister to the Ns-genome donor. Our results suggested that (1) the Ns genome of Leymus was donated by Psathyrostachys, and additional Ns-containing alleles may be introgressed into some Leymus polyploids by recurrent hybridization; (2) The phylogenetic incongruence regarding the resolution of the Xm-genome lineage suggested that the Xm genome of Leymus was closely related to the P genome of Agropyron; (3) Both Ns- and Xm-genome lineages served as the maternal donor during the speciation of Leymus species; (4) The Pseudoroegneria, Lophopyrum and Australopyrum genomes contributed to some Leymus species.


Asunto(s)
Evolución Biológica , Genoma de Planta , Poaceae/genética , Acetiltransferasas/clasificación , Acetiltransferasas/genética , Teorema de Bayes , Cloroplastos/genética , ADN de Plantas/química , ADN de Plantas/aislamiento & purificación , ADN de Plantas/metabolismo , Sitios Genéticos , Fosfoglicerato Quinasa/clasificación , Fosfoglicerato Quinasa/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Poaceae/clasificación , Análisis de Secuencia de ADN , Almidón Sintasa/clasificación , Almidón Sintasa/genética
12.
Ann Bot ; 119(1): 95-107, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28040673

RESUMEN

BACKGROUND AND AIMS: Anthosachne Steudel is a group of allopolyploid species that was derived from hexaploidization between the Asian StY genome Roegneria entity and the Australasia W genome Australopyrum species. Polyploidization and apomixis contribute to taxonomic complexity in Anthosachne Here, a study is presented on the phylogeny and evolutionary history of Anthosachne australasica The aims are to demonstrate the process of polyploidization events and to explore the differentiation patterns of the St genome following geographic isolation. METHODS: Chloroplast rbcL and trnH-psbA and nuclear Acc1 gene sequences of 60 Anthosachne taxa and nine Roegneria species were analysed with those of 33 diploid taxa representing 20 basic genomes in Triticeae. The phylogenetic relationships were reconstructed. A time-calibrated phylogeny was generated to estimate the evolutionary history of A. australasica Nucleotide diversity patterns were used to assess the divergence within A. australasica and between Anthosachne and its putative progenitors. KEY RESULTS: Three homoeologous copies of the Acc1 sequences from Anthosachne were grouped with the Acc1 sequences from Roegneria, Pseudoroegneria, Australopyrum, Dasypyrum and Peridictyon The chloroplast sequences of Anthosachne were clustered with those from Roegneria and Pseudoroegneria Divergence time for Anthosachne was dated to 4·66 million years ago (MYA). The level of nucleotide diversity in Australasian Anthosachne was higher than that in continental Roegneria A low level of genetic differentiation within the A. australasica complex was found. CONCLUSIONS: Anthosachne originated from historical hybridization between Australopyrum species and a Roegneria entity colonized from Asia to Australasia via South-east Asia during the late Miocene. The St lineage served as the maternal donor during the speciation of Anthosachne A contrasting pattern of population genetic structure exists in the A. australasica complex. Greater diversity in island Anthosachne compared with continental Roegneria might be associated with mutation, polyploidization, apomixis and expansion. It is reasonable to consider that A. australasica var. scabra and A. australasica var. plurinervisa should be included in the A. australasica complex.


Asunto(s)
Genoma de Planta/genética , Poaceae/genética , Secuencia de Bases , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Genes de Plantas/genética , Variación Genética/genética , Filogenia , Fitomejoramiento , Análisis de Secuencia de ADN
13.
Genome ; 60(5): 393-401, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28177834

RESUMEN

To transfer multiple desirable alien genes into common wheat, we previously reported a new trigeneric hybrid synthesized by crossing a wheat - Thinopyrum intermedium partial amphiploid with wheat - Psathyrostachys huashanica amphiploid. Here, the meiotic behavior, chromosome constitution, and stripe rust resistance of F5 derivatives from the wheat - Th. intermedium - P. huashanica trigeneric hybrid were studied. Cytological analysis indicated the F5 progenies had chromosome numbers of 42-50 (average 44.96). The mean meiotic configuration was 1.28 univalents, 21.74 bivalents, 0.04 trivalents, and 0.02 tetravalents per pollen mother cell. In 2n = 42 lines, the average pairing configuration was 0.05 I + 19.91 II (ring) + 1.06 II (rod) + 0.003 IV, suggesting these lines were cytologically stable. Most lines with 2n = 43, 44, 46, 48, or 50, bearing a high frequency of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization karyotyping results revealed that 25 lines contained 1-7 Th. intermedium chromosomes, but no P. huashanica chromosomes were found among the 27 self-pollinated progenies. At meiosis, univalents (1-5) possessing Th. intermedium hybridization signals were detected in 19 lines. Bivalents (1-3) expressing fluorescence signals were observed in 12 lines. Importantly, 21 lines harbored wheat - Th. intermedium chromosomal translocations with various alien translocation types. Additionally, two homozygous lines, K13-668-10 and K13-682-12, possessed a pair of wheat - Th. intermedium small fragmental translocations. Compared with the recurrent parent Zhong 3, most lines showed high resistance to the stripe rust (Puccinia striiformis f. sp. tritici) pathogens prevalent in China, including race V26/Gui22. This paper reports a highly efficient technical method for inducing alien translocation between wheat and Th. intermedium by trigeneric hybridization. These lines might be potentially valuable germplasm resources for further wheat improvement.


Asunto(s)
Análisis Citogenético/métodos , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Hibridación Genética , Hibridación in Situ , Cariotipo , Meiosis , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Polen/citología , Polen/genética , Translocación Genética , Triticum/microbiología
14.
Cytogenet Genome Res ; 148(1): 74-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27116422

RESUMEN

Trigeneric hybrids are commonly used as bridges to transfer genes from some wild species to cultivated wheat and to measure the genomic interaction between donor species. We previously reported that trigeneric germplasms were produced by crossing wheat-Psathyrostachys huashanica amphiploids (PHW-SA, 2n = 8x = 56, AABBDDNsNs) with hexaploid triticale (Zhongsi 828, 2n = 6x = 42, AABBRR). In the present study, chromosome pairing behavior and the genome constitution of the F4 progenies of wheat-rye-P. huashanica trigeneric hybrids were studied. Cytological analysis showed that the chromosome number of F4 progenies ranged from 39 to 46, and 57.5% of them had 42 chromosomes. The mean meiotic configuration of F4 lines was 1.71 univalents, 20.26 bivalents, 0.04 trivalents, and 0.001 quadrivalents per pollen mother cell. Among the lines with 2n = 42, the average pairing configuration was 1.21 univalents, 16.22 ring bivalents, 4.16 rod bivalents, and 0.01 trivalents. This result indicated that these lines were cytologically stable. Other lines with 2n = 39, 40, 41, 43, 44, 45, and 46, bearing a high number of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization (GISH) revealed that all F4 lines had 11-14 rye chromosomes, but no P. huashanica chromosomes. The complete set of 14 rye chromosomes was found in 19 lines. At meiosis, GISH detected 1-6 univalents with hybridization signals of rye in 13 lines. Bivalents with fluorescence signals were identified in each line, ranging from 3 to 7. A quadrivalent with hybridization signals was observed in only 1 line, K13-714-8. Lagging chromosomes, chromosome bridges, micronuclei, and chromosome fragments hybridizing with the probe were not discovered in any of the lines. These results inferred that the behavior of rye chromosomes was normal during meiosis. In addition, 21 lines of 2n = 42 (91.3%) with 12 or 14 rye chromosomes, always contained 6 or 7 bivalents bearing fluorescence signals. This suggested that the rye chromosomes exhibiting complete pairing in these lines were cytologically stable during meiosis and may therefore be considered as new hexaploid triticales. Thus, these lines might be potential materials for further hexaploid triticale improvement.


Asunto(s)
Cromosomas de las Plantas/genética , Análisis Citogenético , Genoma de Planta/genética , Hibridación Genética , Poaceae/genética , Secale/genética , Triticum/genética , Emparejamiento Cromosómico , Hibridación in Situ , Meiosis/genética , Poliploidía
15.
Genome ; 59(4): 221-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26961208

RESUMEN

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs), a distant wild relative of common wheat, possesses rich potentially valuable traits, such as disease resistance and more spikelets and kernels per spike, that could be useful for wheat genetic improvement. Development of wheat - P. huashanica translocation lines will facilitate its practical utilization in wheat breeding. In the present study, a wheat - P. huashanica small segmental translocation line, K-13-835-3, was isolated and characterized from the BC1F5 population of a cross between wheat - P. huashanica amphiploid PHW-SA and wheat cultivar CN16. Cytological studies showed that the mean chromosome configuration of K-13-835-3 at meiosis was 2n = 42 = 0.10 I + 19.43 II (ring) + 1.52 II (rod). GISH analyses indicated that chromosome composition of K-13-835-3 included 40 wheat chromosomes and a pair of wheat - P. huashanica translocation chromosomes. FISH results demonstrated that the small segment from an unidentified P. huashanica chromosome was translocated into wheat chromosome arm 5DS, proximal to the centromere region of 5DS. Compared with the cultivar wheat parent CN16, K-13-835-3 was highly resistant to stripe rust pathogens prevalent in China. Furthermore, spikelets and kernels per spike in K-13-835-3 were significantly higher than those of CN16 in two growing seasons. These results suggest that the desirable genes from P. huashanica were successfully transferred into CN16 background. This translocation line could be used as novel germplasm for high-yield and, eventually, resistant cultivar breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Hibridación Genética , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota , Cromosomas de las Plantas , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Translocación Genética , Triticum/microbiología
16.
Physica A ; 460: 152-161, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32288101

RESUMEN

Investigating the underlying principles of the Treatise on Cold Damage Disorder is meaningful and interesting. In this study, we investigated the symptoms, herbal formulae, herbal drugs, and their relationships in this treatise based on a multi-subnet composited complex network model (MCCN). Syndrome subnets were constructed for the symptoms and a formula subnet for herbal drugs. By subnet compounding using MCCN, a composited network was obtained that described the treatment relationships between syndromes and formulae. The results obtained by topological analysis suggested some prescription laws that could be validated in clinics. After subnet reduction using the MCCN, six channel (Tai-yang, Yang-ming, Shao-yang, Tai-yin, Shao-yin, and Jue-yin) subnets were obtained. By analyzing the strengths of the relationships among these six channel subnets, we found that the Tai-yang channel and Yang-ming channel were related most strongly with each other, and we found symptoms that implied pathogen movements and transformations among the six channels. This study could help therapists to obtain a deeper understanding of this ancient treatise.

17.
BMC Plant Biol ; 15: 179, 2015 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-26164196

RESUMEN

BACKGROUND: Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in Elymus L. sensu lato are allopolyploids that share a common St genome from Pseudoroegneria in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the Elymus s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process. RESULTS: The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the Pseudoroegneria, Hordeum and Agropyron species served as the St, H and P genome diploid ancestors, respectively, for the Elymus s. l. polyploids. The ML tree for the chloroplast genes (matK and the intergenic region of trnH-psbA) suggests that the Pseudoroegneria served as the maternal donor of the St genome for Elymus s. l. Furthermore, it suggested that Pseudoroegneria species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization. CONCLUSION: Our results suggest the ancient common maternal ancestral genome in Elymus s. l. is the St genome from Pseudoroegneria. The evolutionary differentiation of the St genome in Elymus s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that E. tangutorum should be treated as C. dahurica var. tangutorum, and E. breviaristatus should be transferred into Campeiostachys. We hypothesized that the Elymus s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.


Asunto(s)
Evolución Biológica , ADN de Plantas/genética , Elymus/genética , Proteínas de Plantas/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , ADN de Cloroplastos/genética , ADN de Cloroplastos/metabolismo , ADN de Plantas/metabolismo , Elymus/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
18.
J Fluoresc ; 25(2): 473-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25731815

RESUMEN

Two novel metal complexes, namely [Tb2(L)6(H2O)4]·(NO3)6·L2·(H2O)18 (1) and [Hg(L)Cl2]n (2), were obtained by the reaction of D-π-A (D = donor, π = conjugated spacer, A = acceptor) type pyridinium inner salt dye, trans-4-[(p-N,N-dimethylamino)styryl]-N-(2-propanoic-acid) pyridinium (L) with corresponding metal salts. Single crystal X-ray diffraction analyses reveal that compound 1 possesses dinuclear motif in which two Tb(III) ions are linked by four carboxylate groups while complex 2 exhibits 1D chain structure based on Hg(II) ions bridged by carboxylate groups. The linear and non-linear optical properties of complexes 1 and 2 have been studied. Both 1 and 2 exhibit intense single-photon excited fluorescence (SPEF) and two-photon excited fluorescence (TPEF) in the red range. Results show that the replacement of central ions from Hg(2+) to Tb(3+) influence the two-photon absorption cross-section significantly through increasing the density of the chromophore. However, the peak positions of two-photon excited fluorescence are only slightly affected. Compared with L molecule, complex 1 shows enhanced two-photon absorption cross-section and decreased fluorescent lifetime.

19.
Microbiology (Reading) ; 160(Pt 2): 353-361, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336463

RESUMEN

To survive, the entomopathogenic fungus Beauveria bassiana, which shows promise as a biocontrol agent for a variety of pests, including agricultural and forestry pests and vectors of human pathogens, must tailor gene expression to the particular pH of its environment. The pH response transcription factor gene BbPacC and its flanking sequence were cloned from this fungus. Quantitative reverse transcription (RT)-PCR revealed that it is highly induced by alkaline pH and salt stress, and the expression level achieved twice that of the housekeeping gene γ-actin. A microfluorometric assay indicated that the 1479 bp promoter region could activate the expression of enhanced green fluorescent protein (EGFP) under the same conditions. Truncation analysis showed that the 1479, 1274, 1040, 888 and 742 bp promoters have similar efficiencies in activating expression of ß-glucuronidase (GUS). The GUS activities of corresponding transformants reached approximately 50 % that of those containing the strong constitutive promoter PtrpC. A truncation upstream at the -572 bp position (referenced to the translation start codon ATG), however, resulted in a significant loss of GUS activity. Both the upstream absences of the -502 and -387 bp positions caused almost complete loss of GUS activity. These results suggest that PPacC is an efficient, alkaline, and salt-inducible promoter, the core cis-elements are mainly located within the -742 to -502 bp region, and promoters equal to or longer than 742 bp may be feasible for regulating gene expression in response to an ambient pH or salt stress.


Asunto(s)
Beauveria/efectos de los fármacos , Beauveria/enzimología , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción/biosíntesis , Beauveria/genética , Clonación Molecular , Análisis Mutacional de ADN , ADN de Hongos/química , ADN de Hongos/genética , Perfilación de la Expresión Génica , Genes Reporteros , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Sales (Química) , Análisis de Secuencia de ADN , Eliminación de Secuencia , Factores de Transcripción/genética
20.
Mol Phylogenet Evol ; 77: 296-306, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24780748

RESUMEN

Ribosomal ITS polymorphism and its ancestral genome origin of polyploid Leymus were examined to infer the evolutionary outcome of rDNA gene following allopolyploid speciation and to elucidate the geographic pattern of ITS variation. The results demonstrated that different polyploids have experienced varying fates, including maintenance or homogenization of divergent arrays, occurrence of chimeric repeats and potential pseudogenes. Our data suggested that (1) the Ns, P/F, and St genomic types in Leymus were originated from Psathyrostachys, Agropyron/Eremopyrum, and Pseudoroegneria, respectively; (2) the occurrence of a higher proportion of Leymus species with predominant uniparental rDNA type might associate with the segmental allopolyploid origin, nucleolar dominance of alloploids, and rapid radiation of Leymus; (3) maintenance of multiple parental ITS types in allopolyploid might result from long generation times associated to vegetative multiplication, number and chromosomal location of ribosomal loci and/or recurrent hybridization; (4) the rDNA genealogical structure of Leymus species might associate with the geographic origins; and (5) ITS sequence clade shared by Leymus species from Central Asia, North America, and Nordic might be an outcome of ancestral ITS homogenization. Our results shed new light on understanding evolutionary outcomes of rDNA following allopolyploid speciation and geographic isolation.


Asunto(s)
ADN Ribosómico/genética , Filogenia , Poaceae/genética , Poliploidía , Genoma de Planta , Poaceae/clasificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA