Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Langmuir ; 39(18): 6413-6424, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126772

RESUMEN

Pathogenic infections pose a significant risk to public health and are regarded as one of the most difficult clinical treatment obstacles. A reliable and safe photothermal antibacterial platform is a promising technique for the treatment of bacterial infections. Given the damage that high temperatures cause in normal tissues and cells, a multifunctional hydrogel driven by photothermal energy is created by trapping bacteria to reduce heat transfer loss and conduct low-temperature photothermal sterilization efficiently. The 3-aminobenzene boronic acid (ABA)-modified graphene oxide is combined with carboxymethyl chitosan (CMCS) and cellulose nanocrystalline (CNC) networks to create the ABA-GO/CNC/CMCS composite hydrogel (composite gel). The obtained composite gel displays a uniform three-dimensional network structure, which can be rapidly heated to 48 °C under infrared light irradiation and is beneficial for killing wound infection bacteria and promoting wound healing. The results of animal experiments show that the composite gel significantly reduces inflammation by killing >99.99% of bacteria under near-infrared light irradiation. The result also demonstrates that it increases the granulation tissue thickness and collagen distribution and promotes wound healing. After treatment for 14 days, compared with the remaining 27.73% of the remaining wound area in the control group, the wound area in the composite gel with NIR group is only 0.91%. It significantly accelerates the wound healing process of Staphylococcus aureus infection and shows great potential for clinical application.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Animales , Hidrogeles/química , Antibacterianos/química , Bacterias , Colágeno , Celulosa
2.
Phys Chem Chem Phys ; 25(12): 8244-8262, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36789750

RESUMEN

Electromagnetic pollution that threatens human health, the ecological environment and electronic equipment has been recognized as a serious environmental issue. In view of this, microwave absorbing materials (MAMs) are urgently required in modern society. Compared with traditional MAMs, carbon aerogels have inherent advantages in microwave absorption because of their high porosity and controllable conductive networks. Moreover, they are self-supporting 3D architectures with tailorable shapes, which satisfy most application scenarios. Therefore, carbon aerogels have aroused great interest in recent years and are being developed as promising absorption materials. In this review, we emphasize recent developments in carbon-aerogel-based MAMs constructed with some typical carbon nanomaterials, including graphene, carbon nanotubes and pyrolytic carbon. Their preparation methods, especially some newly developed strategies, are introduced as well as their influence on the structures and properties of aerogels. With a brief analysis of classic microwave absorption processes, we propose the requirements and strategies for modifying carbon aerogels to achieve ideal microwave absorption performance. Finally, we provide comprehensive comparisons of the MA performances of various carbon aerogels that show application potential and set forth the challenges and prospects of this kind of MAM.

3.
Nanotechnology ; 31(41): 415701, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-32570226

RESUMEN

For conventional design of the electromagnetic absorption materials, introduction of magnetic materials into dielectric materials has been found to achieve better impedance matching, but lead to increase in weight and decrease in chemical stability, therefore limiting their practical applications. In this work, metal-free electromagnetic coupling was achieved by the design of nitrogen-doped nanodiamond/graphene hybrids. Polyaniline is used to self-assembled bridge the nanodiamond and graphene, and the carbonization is carried out for construction and regulation of the C•••N polarization and nitrogen doping. The carbonized hybrid exhibits remarkably enhanced broadband electromagnetic absorption with the optimal reflection loss value around -47.7 dB at 13.8 GHz with an ultrathin thickness of 1.8 mm. The enhancement in electromagnetic absorption is confirmed to result from nitrogen doped ND induced magnetic dissipation and the C•••N multi-polarization modes, as well as the multiple interfacial structures. This work opens a new route realizing lightweight electromagnetic absorption through constructing nitrogen doped carbon nanomaterial.

4.
J Nanosci Nanotechnol ; 18(8): 5704-5710, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29458629

RESUMEN

In view of their super capacity of adsorbing microbial, the carbon nanotubes (CNTs) were used as the carriers for in situ synthesizing well-dispersed and small-sized silver nanodots (AgND), to prepare a new type of antibacterial agent with remarkably improved activity. Polyethyleneimine (PEI) was introduced as a linkage for guaranteeing the as-generated AgND to be anchored onto the CNTs and to prevent them from agglomeration. The obtained hybridizing materials were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy, and the results showed that the AgND with an average size of 2.6 nm were uniformly loaded on surfaces of CNTs. There existed special interactions between silver atoms and CNTs. The antibacterial activities of the as-prepared hybrids against Escherichia coli were evaluated by disk diffusion assay method and minimal inhibitory concentration measurements. The results showed that the as-prepared hybrids displayed a remarkable improvement in antibacterial activity as compared to CNTs, acidified-CNTs and even the identical silver amount of AgNO3 solution, which was mainly attributed to the small size of AgND and the hybridizing effect between AgND and CNTs.

5.
Phys Chem Chem Phys ; 18(4): 2510-6, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26698330

RESUMEN

An efficient method was developed to fabricate a porous hybridizing nanotubes structure of amorphous carbon interspersed among Fe3O4 (C@Fe3O4) with a ∼200 nm diameter and ∼70 nm wall thickness. The as-structured porous nanotubes with ferromagnetic behaviour exhibited excellent microwave absorption properties, including a strong ability to attenuate the electromagnetic (EM) wave, and they are also lightweight. Adding only 10 wt% of the as-prepared sample into paraffin can show a maximum reflection loss of -45.0 dB at 6.18 GHz with a sample thickness of 3.4 mm. The absorption mechanism, which results from its porous nanotubes structure, multi-interfaces, dielectric-magnetic integration and geometric effect, is proposed to explain the excellent EM absorption performance. Furthermore, the synthesis strategy presented herein can be expended as a facile approach to synthesizing related carbon-based nanostructures for functional design and applications.

6.
Phys Chem Chem Phys ; 17(6): 4328-36, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25579200

RESUMEN

Based on the density functional theory, the geometric and electronic structures, chemical stability, and bonding properties of the endohedral metallofullerenes, M@C20 (M = Eu(3-), Am(3-), Gd(2-), Cm(2-), Tb(-), Bk(-), Dy, Cf, Ho(+), Es(+), Er(2+), Fm(2+), Tm(3+), Md(3+), Yb(4+), No(4+), Lu(5+), and Lr(5+)), were investigated. Through encapsulation of an f-block metal atom/ion with 12 valence electrons, the bare C20 cage with the D2h point group could be stabilized to a highly symmetrical Ih structure. The calculated values of HOMO-LUMO energy gaps using the B3lYP and BHHLYP functionals ranged from 2.22 to 5.39 eV and from 3.89 to 7.95 eV, respectively. The stability of these metal-encapsulated clusters can be attributed to the 32-electron rule, where the central metal atom's orbitals strongly participated in the t2u, gu, t1u, hg, and ag valence molecular orbitals.

7.
Phys Chem Chem Phys ; 17(5): 3024-31, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25510199

RESUMEN

Helical nanofibers are prepared through in situ growth on the surface of a tetrapod-shaped ZnO whisker (T-ZnO), by employing a precursor decomposition method then adding substrate. After heat treatment at 900 °C under argon, this new composite material, named helical nanofiber-T-ZnO, undergoes a significant change in morphology and structure. The T-ZnO transforms from a solid tetrapod ZnO to a micro-scaled tetrapod hollow carbon film by reduction of the organic fiber at 900 °C. Besides, helical carbon nanofibers, generated from the carbonization of helical nanofibers, maintain the helical morphology. Interestingly, HCNFs with the T-hollow exhibit remarkable improvement in electromagnetic wave loss compared with the pure helical nanofibers. The enhanced loss ability may arise from the efficient dielectric friction, interface effect in the complex nanostructures and the micro-scaled tetrapod-hollow structure.

8.
Int J Biol Macromol ; 267(Pt 2): 131486, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604420

RESUMEN

The molecular brush structures have been developed on cotton textiles for long-term and efficient broad-spectrum antimicrobial performances through the cooperation of alkyl-chain and quaternary ammonium sites. Results show that efficient antibacterial performances can be achieved by the regulation of the alkyl chain length and quaternary ammonium sites. The antibacterial efficiency of the optimized molecular brush structure of [3-(N,N-Dimethylamino)propyl]trimethoxysilane with cetyl modification on cotton textiles (CT-DM-16) can reach more than 99 % against both E. coli and S. aureus. Alkyl-chain grafting displayed significantly improvement in the antibacterial activity against S. aureus with (N,N-Diethyl-3-aminopropyl)trimethoxysilane modification on cotton textiles (CT-DE) based materials. The positive N sites and alkyl chains played important roles in the antibacterial process. Proteomic analysis reveals that the contributions of cytoskeleton and membrane-enclosed lumen in differentially expressed proteins have been increased for the S. aureus antibacterial process, confirming the promoted puncture capacity with alkyl-chain grafting. Theoretical calculations indicate that the positive charge of N sites can be enhanced through alkyl-chain grafting, and the possible distortion of the brush structure in application can further increase the positive charge of N sites. Uncovering the regulation mechanism is considered to be important guidance to develop novel and practical antibacterial materials.


Asunto(s)
Antibacterianos , Fibra de Algodón , Escherichia coli , Staphylococcus aureus , Textiles , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Silanos/química
9.
Langmuir ; 29(18): 5573-80, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23570415

RESUMEN

The production of H2O2 has been taken for a crucial reason for antimicrobial activity of ZnO without light irradiation. However, how the H2O2 generates in ZnO suspension is not clear. In the present work, the comparatively detections on three kinds of ZnO, tetrapod-like ZnO whiskers (t-ZnO), nanosized ZnO particles (n-ZnO), and microsized ZnO particles (m-ZnO), showed that the antimicrobial activity of ZnO was correlated with its production of H2O2. Oxygen vacancy (V(O)) in the surface layer of ZnO crystals determined by XPS indicated that it was quite probably involved in the production of H2O2. To validate the role of V(O), the concentration of VO in t-ZnO was adjusted by heat-treatment under the atmospheres of H2, vacuum, and O2, respectively, and the H2O2 production and antimicrobial effect were detected. Consistently, the t-ZnO treated in H2, which possessed the most V(O) in its crystal, produced the most H2O2 and displayed the best antimicrobial activity. These results provide the basis for developing a more detailed mechanism for H2O2 generation catalyzed by ZnO and for taking greater advantage of this type of antimicrobial agent.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Peróxido de Hidrógeno/síntesis química , Oxígeno/química , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Cristalización , Peróxido de Hidrógeno/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie , Óxido de Zinc/química
10.
Materials (Basel) ; 16(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37241453

RESUMEN

The problem of interfacial interaction between carbon fiber (CF) and the matrix is the key to the failure of CF-reinforced plastic (CFRP). A general strategy to enhance interfacial connections is to create covalent bonds between the components, but this usually reduces the toughness of the composite material, which in turn limits the range of applications of the composite. In this study, carbon nanotubes (CNTs) were grafted onto the CF surface using the molecular layer bridging effect of the dual coupling agent to prepare multi-scale reinforcements, which significantly improved the roughness and chemical activity of the CF surface. By introducing a transition layer structure between the carbon fibers and the epoxy resin matrix to moderate the large modulus and scale differences between them, the interfacial interaction was improved while enhancing the strength and toughness of CFRP. We used amine-cured bisphenol A-based epoxy resin (E44) as the matrix resin and prepared the composites by the hand-paste method and performed tensile tests on the prepared composites, which showed that, compared with the original CF-reinforced composites, the modified composites showed an increase in tensile strength, Young's modulus and elongation at break by 40.5%, 66.3% and 41.9%, respectively.

11.
J Colloid Interface Sci ; 628(Pt B): 233-241, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998449

RESUMEN

It remains a significant challenge to develop a photothermal adsorbent with a heating response as fast as a joule-heating adsorbent and simultaneously possessing excellent mechanical stability and reusability for rapid oil cleaning. Here, we report a novel monolithic design to fabricate a photothermal hybrid sponge for rapid oil cleaning by integrating graphite interlayer compounds as photothermal units into the three-dimensional photothermal network of carbon nanotubes. This unique monolithic design enabled the hybrid sponge to present excellent photothermal performance: firstly, the superhydrophobic hybrid sponge has low thermal resistance resulting from the defectless surface; secondly, the photothermal units were weaved in the photothermal network, preventing detachment in the cycling and providing ultrafast photothermal heating rate. The hybrid sponge rises to 81 °C in merely 25 s under irradiation (1 Sun), superior to most photothermal oil adsorbents reported so far. This study provides a new structural design for constructing photothermal adsorbents with a fast-heating response for rapid crude oil cleaning.


Asunto(s)
Grafito , Nanotubos de Carbono , Petróleo , Adsorción , Nanotubos de Carbono/química , Grafito/química , Calefacción
12.
J Colloid Interface Sci ; 615: 215-226, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35131502

RESUMEN

Conductive hydrogel has been considered as a promising material for wearable sensors, constructing a flexible conductive hydrogel sensor with super stretchability, adhesion, and sensing stability is essential, but still challenging. Herein, A super-stretchable, adhesive, and conductive nanocomposite hydrogel was successfully constructed by a facile and one-pot process in conjunction with ball milling and blending. The resulting hydrogel exhibited super-stretchable ability (2795%), excellent tensile stress (128.6 kPa), good fatigue resistance, and self-recovery ability due to multiple cross-linked network structures, including physical hybrid networks (hydrogen bonds and ionic coordination bonds) and flexible polyacrylamide networks. Moreover, the nanocomposite hydrogel showed outstanding conductivity stability, fast response, durability, and repeatability. And it displayed excellent adhesion on various materials. Strain sensors based on hydrogels showed high sensitivity, stability, and action recognition ability. In summary, this work provides a simple strategy for preparing conductive hydrogel sensors with high stretchability, adhesion, and stability, and has potential application prospects in the field of wearable sensors for human body motion detection.


Asunto(s)
Nanofibras , Dispositivos Electrónicos Vestibles , Adhesivos/química , Celulosa/química , Conductividad Eléctrica , Humanos , Hidrogeles/química , Nanogeles
13.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889710

RESUMEN

The dynamic behaviors of aniline cation (ANI+) intercalating into graphite interlayers are systematically studied by experimental studies and multiscale simulations. The in situ intercalation polymerization designed by response surface methods implies the importance of ultrasonication for achieving the intercalation of ANI+. Molecular dynamics and quantum chemical simulations prove the adsorption of ANI+ onto graphite surfaces by cation-π electrostatic interactions, weakening the π-π interactions between graphene layers. The ultrasonication that follows breaks the hydrated ANI+ clusters into individual ANI+. Thus, the released positive charges of these dissociative cations and reduced steric hindrance significantly improve their intercalation ability. With the initial kinetic energy provided by ultrasonic field, the activated ANI+ are able to intercalate into the interlayer of graphite. This work demonstrates the intercalation behaviors of ANI+, which provides an opportunity for investigations regarding organic-molecule-intercalated graphite compounds.

14.
Nanomaterials (Basel) ; 11(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34835789

RESUMEN

Recently, as a two-dimensional (2D) material, black phosphorous (BP) has attracted more and more attention. However, few efforts have been made to investigate the BP/polyaniline (PANI) nanocomposite for ammonia (NH3) gas sensors. In this work, the BP/PANI nanocomposite as a novel sensing material for NH3 detection, has been synthesized via in situ chemical oxidative polymerization, which is then fabricated onto the interdigitated transducer (IDTs). The electrical properties of the BP/PANI thin film are studied in a large detection range from 1 to 4000 ppm, such as conduction mechanism, response, reproducibility, and selectivity. The experimental result indicates that the BP/PANI sensor shows higher sensitivity and larger detection range than that of PANI. The BP added into PANI, that may enlarge the specific surface area, obtain the special trough structure for gas channels, and form the p-π conjugation system and p-p isotype heterojunctions, which are beneficial to increase the response of BP/PANI to NH3 sensing. Meanwhile, in order to support the discussion result, the structure and morphology of the BP/PANI are respectively measured by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and field emissions scanning electron microscopy (SEM). Moreover, the sensor shows good reproducibility, and fast response and recovery behavior, on NH3 sensing. In addition, this route may offer the advantages of an NH3 sensor, which are of simple structure, low cost, easy to assemble, and operate at room temperature.

15.
Carbohydr Polym ; 253: 117290, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278953

RESUMEN

The hybrid networks of cellulose nanocrystals (CNCs) and graphene nanoplatelets (GNPs) were constructed in polyethylene glycol (PEG) through the common solution compounding processing, in which GNPs provided the thermally conductive path while CNCs restricted the leakage of PEG during the phase transition. The results showed that CNCs greatly enhanced the shape stability of the composite phase change materials (PCMs) while thermal conductivity was still maintained at high level. At the contents of 8 wt% (CNCs) and 4 wt% (GNPs), the enthalpy of the composite PCM was 145.5 J/g, which was 88 % of pure PEG, and the thermal conductivity was 2.018±0.067 W/m K about 563.7 % higher than that of pure PEG. Furthermore, the composite PCMs exhibited outstanding light-thermal and electro-thermal conversion capabilities. Furthermore, the composite PCMs could be designed as the temperature stabilizing component exhibiting intelligent adaptive thermal management role, providing stable temperature condition for electronic devices in extreme environment.

16.
ACS Appl Mater Interfaces ; 13(24): 28710-28720, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34102052

RESUMEN

Development of high-performance materials for electromagnetic wave absorption has attracted extensive interest, but it still remains a huge challenge especially in reducing density and lowering filler loading. Herein, a hierarchical all-carbon nanostructure is rationally designed as follows: the defect-rich hollow graphite capsules (GCs) controlled by the size/density of ZnO templates are synthesized on the surface of helical carbon nanotubes (HCNTs) to form a hybrid nanocomposite, denoted as GCs@HCNTs. As a result, the GCs@HCNTs demonstrate a strong and wide absorption performance with a very low filler loading of 10 wt %. The minimum reflection loss reaches -51.7 dB at 7.6 GHz, and the effective bandwidth (below -10 dB) ranges from 8 to 14 GHz, covering the whole X or Ku bands. The hierarchical nanostructure and homoatomic heterogeneous interface are beneficial to impedance matching and bring additional dipole polarization enhanced by the structural defects, which may enlighten the design of ultralight and broadband high-performance electromagnetic wave absorption materials.

17.
ACS Appl Mater Interfaces ; 13(7): 8808-8822, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33565860

RESUMEN

Helical carbon nanotube (HCNT) is a vital member of carbon nanomaterials, but little effort was devoted to explore its unique characteristics and applications during the past few decades. Here, we report an organic thermoelectric composite with an excellent photothermoelectric (PTE) effect by conformally wrapping polypyrrole (PPy) on the intricate surface of HCNTs, which have been confirmed to have remarkable near-infrared (NIR) photothermal conversion capability and ultralow heat transportation characteristics. The results indicate that with the increasing HCNT content, PPy shell thickness reduces and exhibits denser as well as partial orientation, while the inter-ring angle slowly decreases and the bipolaron becomes dominant in carrier composition gradually. Consequently, the Seebeck coefficient increases monotonically, whereas the electrical conductivity remains nearly invariant. The final composite combines the benign thermoelectric properties, excellent photothermal response performance, and the lowest thermal conductivity of the carbon-based thermoelectric composite yet reported (0.064 W m-1 K-1). A single strip NIR light-stimulated adjustable delay switch was designed and fabricated, with the open-circuit voltage and short-circuit current under a 400 mW cm-2 NIR-stimulated approach to 720 µV and 62 nA with the discrepancy of consecutive periodic output signals less than 4.2%, exhibiting incredible stability and reliability and demonstrating the highest output voltage of a single strip among the reported organic PTE composite at room temperature. Our work fills in a gap of HCNT research, which hitherto existed in the PTE and thermoelectric field.

18.
ACS Appl Mater Interfaces ; 12(42): 47811-47819, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32985859

RESUMEN

Considering the extraordinary properties of graphene nanosheets, graphene-based materials from a molecular level to a macroscopic level as paper-like graphene films have recently grown for promising applications in many fields. However, there is still a major challenge in the design of the interface between adjacent graphene nanosheets so as to achieve high strength, high toughness, and high conductivity. Herein, we construct the high-performance graphene-based papers by using graphene as the matrix, carbon nanotubes (CNTs) as the reinforcement, and a long-chain molecule (1-pyrenylbutyric acid-linear diamine-1-pyrenylbutyric acid, PBA-diamine-PBA) as the bridging agent. The multiple π-π interactions between the fused rings, graphene nanosheets, and CNTs are generated among the aromatic rings of PBA, rGO, and CNTs, which significantly improve the mechanical properties and electrical properties of the cross-linked composite papers (abbreviated to CLP-X, where X is the carbon chain length). Furthermore, the linear diamines with different lengths of carbon chain affect the properties of papers after cross-linking. Especially, the as-obtained graphene-based paper (CLP-6) shows a high tensile strength (625.2 MPa), high toughness (28.5 MJ/m3), and high electrical conductivity (233.4 S/cm) as well as high solvent stability, which maintains the premium stability in different solvents. The improvement of strengthening and toughening mainly comes from the effective stress transfer and the reduction of slipping distance between rGO and CNTs during the stretching, with the help of multiple π-π cross-linking by in situ Raman analysis and simulation calculations. In addition, the high electrical conductivity leads to an excellent electromagnetic interference shielding capability (44,502 dB·cm2/g). The distinguished electric heating performance with rapid response to temperature changes is also recognized. Therefore, the proposed interface design is demonstrated as an effective way for developing a graphene-based paper with superior properties.

19.
Sci Total Environ ; 738: 139714, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531587

RESUMEN

Various nanostructured surfaces have been developed recently to physically inactivate bacteria, for reducing the rapidly spreading threat of pathogenic bacteria. However, it generally takes several hours for these surfaces to inactivate most of the bacteria, which greatly limits their application in the fields favoring rapid bactericidal performance. Besides, the accumulated bacteria debris left on these surfaces is rarely discussed in the previous reports. Herein we report the nanotip-engineered ZnO nanoarrays (NAs) with ultrafast physical bactericidal rate and the ability to photocatalytically remove the bacteria debris. Neither chemical (Zn2+ or reactive oxygen species) nor photocatalytic effect leads to the ultrafast bactericidal rate, where 97.5% of E. coli and 94.9% of S. aureus are inactivated within only 1 min. The simulation analysis further supported our proposed mechanism attributing the ultrafast bactericidal activity to the great stress enabled by the uneven topography. Moreover, the re-exposure of the ZnO NAs nanotips can be achieved in only 10 min under a mild UV light source. This study not only presents an ultrafast physical bactericidal activity, but also demonstrates the potential of the recyclable and photocatalytic self-cleaning functions of theses surfaces for applications that desire rapid and sustainable bactericidal performance.


Asunto(s)
Staphylococcus aureus , Óxido de Zinc , Antibacterianos , Bacterias , Catálisis , Escherichia coli
20.
RSC Adv ; 9(48): 27904-27910, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-35530501

RESUMEN

In order to reduce the widespread threat of bacterial pathogen diseases, mechanical bactericidal surfaces have been widely reported. However, few of these nanostructured surfaces were investigated from a sustainable perspective. In this study, we have prepared, inspired by the slippery zone of Nepenthes, a multifunctional nanostructured surface with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics. First, a nanoblade-like surface made of Zn-Al layered double hydroxides was prepared for achieving faster bactericidal rate and wider bactericidal spectrum (2.10 × 104 CFU cm-2 min-1 against Escherichia coli and 1.78 × 103 CFU cm-2 min-1 against Staphylococcus aureus). Then the self-cleaning and insect anti-adhesive properties were tested on the fluorosilane-modified nanoblades, leaving little cell debris remaining on the surface even after 4 continuous bactericidal experiments, and showing a slippery surface for ants to slide down in 3 s. This study not only discovers a new nature-inspired mechanical bactericidal nanotopography, but also provides a facile approach to incorporate multiple functions into the nanostructured surface for practical antibacterial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA