Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Sci Food Agric ; 104(10): 6108-6117, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445510

RESUMEN

BACKGROUND: Excessive NaCl intake in liquid and semi-solid food (e.g. soup, hot pot base, sauce) poses a high risk to human health, and reducing NaCl intake is a major concern for global health. RESULTS: Using the generalized Labeled Magnitude Scale (gLMS) method, the study verified the possibility of sodium reduction through oil addition. The compromised acceptance threshold (CAT) and hedonic rejection threshold (HRT) were determined. The gLMS results showed that the saltiness intensity of samples containing 0.36% NaCl and 2.29% sunflower seed oil was significantly higher than that of samples containing only 0.36% NaCl (P < 0.05). CAT and HRT results indicated that by adding 3.59% sunflower oil, the NaCl content could be reduced to a minimum of 0.14% without causing sensory rejection in bone broth samples. The quantitative descriptive analysis method was used to determine the effects of NaCl and oil concentrations on the sensory attributes of bone broth samples. Furthermore, it was used to analyze the consumer acceptability drivers in combination with the hedonic scale to optimize the formulation of reduced-salt bone broth products. Notably, sample E (0.36% NaCl, 2.29% fat) not only had a significant salt reduction effect with a 20% decrease in NaCl, but also had improved overall acceptability. CONCLUSION: This study provides theoretical guidance for designing salt-reduction cuisine within the catering and food industries, including bone broth and hot pot bases. © 2024 Society of Chemical Industry.


Asunto(s)
Comportamiento del Consumidor , Gusto , Humanos , Adulto , Aceite de Girasol/química , Femenino , Masculino , Aditivos Alimentarios/análisis , Aditivos Alimentarios/química , Cloruro de Sodio/análisis , Cloruro de Sodio/química , Adulto Joven , Persona de Mediana Edad , Cloruro de Sodio Dietético/análisis , Huesos/química
2.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557951

RESUMEN

To elucidate the effects of the different terroir on wine aroma in six sub-regions of Eastern Foothills of Helan Mountain in Ningxia, a premium wine-producing region in China, 71 Cabernet Sauvignon wines were investigated by gas chromatography-mass spectrometry (GC-MS), check-all-that-apply (CATA), and quantitative descriptive analysis (QDA). The bidirectional orthogonal partial least squares-discriminant analysis (O2PLS-DA) results showed that the Cabernet Sauvignon dry red wines from Xixia (XX) and Yongning (YN) had similar volatile profiles due to their geographical proximity and were characterized by higher concentrations of esters, higher alcohols, and volatile phenols because the similar aromatic profiles were detected in their dry red wines. Shizuishan (SZS) and Hongsipu (HSP) wines showed clear differences compared to the wines of the other four sub-regions, being mainly characterized by relatively higher phenolic aldehydes and volatile phenols. The concentrations of methoxypyrazines and norisoprenoids varied mainly depending on the climate diversity of the sub-regions. The highest 3-isobutyl-2-methoxypyrazine (IBMP) concentration was presented in the Helan (HL) wines. The Qingtongxia (QTX) wines have the highest ß-damascenone, which might be influenced by the fact that QTX has the lowest effective accumulated temperature and the highest sunshine duration among the five sub-regions. Esters including ethyl octanoate, ethyl decanoate, ethyl butanoate, ethyl hexanoate, and isoamyl acetate were the highest in HL. Additionally, the herbaceous, black berry, and red berry notes in HL and QTX were the most outstanding.


Asunto(s)
Vitis , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Bebidas Alcohólicas/análisis , Fenoles/análisis , Ésteres/análisis , China , Vitis/química , Compuestos Orgánicos Volátiles/análisis
3.
J Sci Food Agric ; 98(1): 104-112, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28543285

RESUMEN

BACKGROUND: Monosaccharides, organic acids and amino acids are the important flavour-related components in wines. The aim of this article is to develop and validate a method that could simultaneously analyse these compounds in wine based on silylation derivatisation and gas chromatography-mass spectrometry (GC-MS), and apply this method to the investigation of the changes of these compounds and speculate upon their related influences on Cabernet Sauvignon wine flavour during wine ageing. This work presented a new approach for wine analysis and provided more information concerning red wine ageing. RESULTS: This method could simultaneously quantitatively analyse 2 monosaccharides, 8 organic acids and 13 amino acids in wine. A validation experiment showed good linearity, sensitivity, reproducibility and recovery. Multiple derivatives of five amino acids have been found but their effects on quantitative analysis were negligible, except for methionine. The evolution pattern of each category was different, and we speculated that the corresponding mechanisms involving microorganism activities, physical interactions and chemical reactions had a great correlation with red wine flavours during ageing. CONCLUSION: Simultaneously quantitative analysis of monosaccharides, organic acids and amino acids in wine was feasible and reliable and this method has extensive application prospects. © 2017 Society of Chemical Industry.


Asunto(s)
Ácidos/química , Aminoácidos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Monosacáridos/química , Vino/análisis , Humanos , Odorantes/análisis , Olfato , Factores de Tiempo
4.
J Food Sci Technol ; 55(6): 2240-2250, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29892124

RESUMEN

This study aimed to investigate the effect of Lactobacillus plantarum strains on quality improvement of bog bilberry juice. Bog bilberry juice with different pH conditions was fermented by Lactobacillus B7 or C8-1 strain. Physicochemical index, amino acids, phenolic compounds, and volatiles of these fermented juices were compared. Results indicated that Lactobacillus plantarum strains preferred to metabolize malic acid and reducing sugar in non-pH-adjusted juice (NJ, pH 2.65), whereas quinic and citric acids were largely consumed in pH-adjusted juice (AJ, pH 3.50). Shikimic acid and aromatic amino acids were significantly accumulated in pH-adjusted juice, and phenolic compounds in both juices were significantly reduced. These strains enhanced the composition and concentration of volatiles compounds in non-pH-adjusted juice and improved the floral and fruity flavors. However, concentration and complexity of volatiles were reduced in pH-adjusted juices.

5.
Int J Mol Sci ; 18(12)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261101

RESUMEN

C6 volatiles are synthesized through lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway and these volatiles play important roles in the aromatic quality of grape berries. This study investigated the evolution of both C6 volatiles and the key genes in the LOX-HPL pathway in different table grape cultivars during the berry development period, and further assessed the correlation between the accumulation of C6 volatiles and the expression of these genes in these cultivars. Results showed that hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol were found to be the dominant C6 volatiles in these ripened grape cultivars under two consecutive vintages, and their flavor notes were incorporated in the overall aroma of these cultivars. The cultivar "Xiangfei" showed the most abundant level of C6 aldehydes and C6 acid, whereas the cultivar "Tamina" and "Moldova" possessed the highest C6 alcohol content. The "Muscat of Alexandria" cultivar was found to contain the highest level of C6 esters. C6 volatiles were grouped into three evolutionary patterns in these cultivars during berry development, and their evolution was consistent with the evolution of the LOX-HPL pathway genes' expression. Pearson's correlation analysis indicated that the LOX-HPL-pathway-related genes were correlated to the accumulation of C6 volatiles in these cultivars, and VvLOXA appeared to be an important gene that regulated the synthesis of all C6 volatiles.


Asunto(s)
Aldehído-Liasas/genética , Sistema Enzimático del Citocromo P-450/genética , Lipooxigenasa/genética , Aceites Volátiles/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Aldehído-Liasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Lipooxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Vitis/enzimología , Vitis/metabolismo
6.
Rapid Commun Mass Spectrom ; 30(13): 1619-26, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27321850

RESUMEN

RATIONALE: To develop a reliable and accurate method for the identification of anthocyanins and their subsequent derivatives formed during red grape fermentation and wine maturation. METHODS: By using a Poroshell 120 EC-C18 column in a high-performance liquid chromatography/triple-quadrupole tandem mass spectrometry (HPLC/QqQ-MS/MS) system, combined with multiple reaction monitoring (MRM), it was possible to establish and validate a method for the determination of anthocyanin and a range of complex reaction products. A selected range of six 3-O-glucosidic anthocyanins were used as standards. A database was established from these results. Then various red wines were examined and quantified by this method. RESULTS: With the range of accuracy and precision being 86.97-111.39% and 0.09-4.32%, respectively, the HPLC/QqQ-MS/MS method was found to be a reliable method for anthocyanin detection. By using this HPLC/QqQ-MS/MS method combined with the inclusive database, accurate identification of 95 anthocyanin compounds of different families from various wine samples was systematically achieved in 29 min. CONCLUSIONS: By combining this analytical system with an inclusive database, it was possible to determine a wide range of anthocyanins and related complex derivatives for the first time. We consider that it should be possible to extend this method further to include more complex anthocyanins, and to other complex compounds. Copyright © 2016 John Wiley & Sons, Ltd.

7.
Int J Mol Sci ; 17(11)2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27886056

RESUMEN

Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.


Asunto(s)
Aldehído-Liasas/genética , Sistema Enzimático del Citocromo P-450/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Lipooxigenasa/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Vitis/genética , Alcoholes/metabolismo , Aldehído-Liasas/metabolismo , Aldehídos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Análisis Discriminante , Aromatizantes/metabolismo , Frutas/metabolismo , Variación Genética , Lipooxigenasa/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad de la Especie , Vitis/clasificación , Vitis/metabolismo , Vino/análisis
8.
Molecules ; 21(10)2016 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-27706098

RESUMEN

This study investigated the effect of raw material, pressing, and glycosidase on the aromatic profile of goji berry wine. The free-run and the pressed juice of dried and fresh goji berries were used for wine production, whereas glycosidase was applied to wine after fermentation. Dried goji berry fermented wine exhibited much stronger fruity, floral, caramel, and herbaceous odors due to higher levels of esters, ß-ionone and methionol. However, fresh berry fermented wine possessed stronger chemical notes due to higher levels of 4-ethylphenol. Pressing treatment reduced the fruity and caramel odors in these fermented wines, and fresh berry free-run juice fermented wine exhibited the least floral aroma. Glycosidase addition did not alter the aromatic composition of wines. The principal component analysis indicated that goji raw material played a primary role in differentiating the aromatic profiles of the wines due to the difference on the content of 20 esters, nine benzenes, eight aldehydes/ketones, three acids, two alcohols and six other volatiles. The content differences on isopentyl alcohol, styrene, benzyl alcohol, 1-octanol, (E)-5-decen-1-ol, 1-hexanol, and ß-cyclocitral resulted in the segregation of the wines with and without the pressing treatment, especially for fresh berry fermented wine.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Lycium/química , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Fermentación , Aromatizantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de Componente Principal , Olfato
9.
Molecules ; 22(1)2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28036078

RESUMEN

A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.


Asunto(s)
Aromatizantes/análisis , Odorantes/análisis , Fosfatos/química , Vino/análisis , Aldehídos/análisis , Antocianinas/análisis , Ésteres/análisis , Fermentación , Flavonoides/análisis , Cetonas/análisis , Fenoles/análisis , Vaccinium myrtillus , Compuestos Orgánicos Volátiles/análisis
10.
Molecules ; 20(11): 19865-77, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26556321

RESUMEN

Phenolic compounds determine the color quality of fruit wines. In this study, the phenolic compound content and composition, color characteristics and changes during 6 months of bottle aging were studied in wines fermented with bog bilberry syrup under three different pHs. The total anthocyanins and total phenols were around 15.12-16.23 mg/L and 475.82 to 486.50 mg GAE/L in fresh wines and declined 22%-31% and about 11% in bottle aged wines, respectively. In fresh wines, eight anthocyanins, six phenolic aids and 14 flavonols, but no flavon-3-ols were identified; Malvidin-3-O-glucoside, petunidin-3-O-glucoside and delphinium-3-O-glucoside were the predominant pigments; Chlorogentic acid was the most abundant phenolic acid, and quercetin-3-O-galactoside and myricetin-3-O-galactoside accounted for nearly 90% of the total flavonols. During 6 months of bottle storage, the amounts of all the monomeric anthocyanins and phenolic acids were reduced dramatically, while the glycosidyl flavonols remained constant or were less reduced and their corresponding aglycones increased a lot. The effects of aging on blueberry wine color were described as the loss of color intensity with a dramatic change in color hue, from initial red-purple up to final red-brick nuances, while the pH of the fermentation matrix was negatively related to the color stability of aged wine.


Asunto(s)
Polifenoles/química , Vaccinium myrtillus/química , Vino/análisis , Antocianinas/química , Fermentación , Flavonoles/química , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/química , Fenoles/química , Pigmentos Biológicos/análisis
11.
Int J Mol Sci ; 15(12): 21992-2010, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25470020

RESUMEN

Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars ("Riesling", "Cabernet Sauvignon", "Gewurztraminer") with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes.


Asunto(s)
Frutas/enzimología , Hidroliasas/metabolismo , Monoterpenos/metabolismo , Plastidios/enzimología , Sesquiterpenos/metabolismo , Vitis/enzimología , Vitis/crecimiento & desarrollo , Monoterpenos Acíclicos , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Hidroliasas/química , Hidroliasas/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Fracciones Subcelulares/enzimología , Vitis/genética
12.
Plants (Basel) ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256727

RESUMEN

Many customers prefer goji berry pulp, well-known for its high nutritional content, over fresh goji berries. However, there is limited research on its sensory lexicon and distinctive flavor compounds. This study focused on developing a sensory lexicon for goji berry pulp and characterizing its aroma by sensory and instrumental analysis. Sensory characteristics of goji berry pulp were evaluated by our established lexicon. A total of 83 aromatic compounds in goji berry pulp were quantified using HS-SPME-GC-Orbitrap-MS. By employing OAV in combination, we identified 17 aroma-active compounds as the key ingredients in goji berry pulp. Then, we identified the potentially significant contributors to the aroma of goji berry pulp by combining principal component analysis and partial least squares regression (PLSR) models of aroma compounds and sensory attributes, which included 3-ethylphenol, methyl caprylate, 2-hydroxy-4-methyl ethyl valerate, benzeneacetic acid, ethyl ester, hexanal, (E,Z)-2,6-nonadienal, acetylpyrazine, butyric acid, 2-ethylhexanoic acid, 2-methyl-1-propanol, 1-pentanol, phenylethyl alcohol, and 2-nonanone. This study provides a theoretical basis for improving the quality control and processing technology of goji berry pulp.

13.
Food Chem X ; 21: 101198, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38370303

RESUMEN

This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.

14.
Curr Res Food Sci ; 8: 100693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356611

RESUMEN

The odor of infant formula changes due to alterations in its volatile composition during the shelf life. However, there is currently a lack of research on whether the odor changes in infant formula during the secondary shelf life, which refers to the period of repeated opening and usage in daily life. This study used headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-electrostatic orbitrap high-resolution mass spectrometry (GC-Orbitrap-MS) to investigate the volatile composition changes in one-stage and three-stage infant formulas during different stages (0 day, 3 days, and 7 days during the secondary shelf-life, i.e. simulated daily use). A total of 32 volatiles were identified, including nine aldehydes, seven ketones, four alcohols, three furans, two sulfur compounds, two esters, and five terpenoids. Of these, 16 compounds changed significantly in one-stage samples and 23 compounds in three-stage samples within 7 days of the secondary shelf-life. Further the odor of the three-stage infant formula samples was found changed substantially after 3 days of simulated use by using the triangle test. This study highlighted the considerable alterations in volatile compound composition and sensory changes during the simulated daily use and provided valuable insights for consumers in selecting and using infant formula products, as well as a new perspective for enterprises to improve the sensory quality of their products.

15.
Food Chem ; 455: 139881, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823136

RESUMEN

Consumer partiality for food products is related to purchase and consumption behavior, and are influenced by sensory preferences. The sensory and chemical drivers behind consumer preference in the infant formula (IF) were analyzed. A total of 31 aroma-active compounds were identified, playing an important role in the production of off-flavors (especially fishy). Combined with the correlation analysis, the key aroma substances affecting the sensory attributes of IF were initially identified. A21, A22, B9 represented the key substances responsible for producing milky and creamy, while A2, A5, A11, A12, B5, C15, H5 primarily produced fishy. In addition, the two sensory attributes namely milky and creamy, and the T-sweet were more strongly correlated with consumer preference. Therefore, it can be concluded that consumers are more interested in the main flavor of the product than the off-flavor. These findings will inform the quality control of IF and the maintenance of sensory quality.


Asunto(s)
Comportamiento del Consumidor , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Fórmulas Infantiles , Odorantes , Gusto , Humanos , Fórmulas Infantiles/química , Lactante , Odorantes/análisis , Aromatizantes/química , Aromatizantes/análisis , Adulto , Femenino , Masculino , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
16.
Food Chem X ; 18: 100690, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37179977

RESUMEN

The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrometry). GC-Orbitrap-MS quantified 96 compounds, including 18 alcohols, 12 esters, 7 ketones, 20 terpenoids, 11 pyrazines, 6 aldehydes, 6 furans, 6 benzene ring-containing compounds, 3 sulfides, 2 alkanes, and 5 nitrogen-containing compounds. Moreover, 22 compounds including 5 acids, 1 amide, and 16 aldehydes were quantified using GC-Quadrupole-MS. To our knowledge, 23 volatile compounds were reported for the first time in sunflower seed oil. All the seven samples were found to have a 'roasted sunflower seeds' note, 'sunflower seeds aroma' note and 'burnt aroma' note and only five of them had 'fried instant noodles' note, three had 'sweet' note and two had 'puffed food' note. Partial least squares regression was used to screen the candidate key volatiles that caused the aroma differences among these seven samples. It was observed that 'roasted sunflower seeds' note was positively correlated with 1-octen-3-ol, n-heptadehyde and dimethyl sulfone, whereas the 'fried instant noodles' and 'puffed food' demonstrated a positive correlation with pentanal, 3-methylbutanal, hexanal, (E)-2-hexenal and 2-pentylfuran. Our findings provide information to the producers and developers for quality control and improvement of sunflower seed oil.

17.
Front Microbiol ; 14: 1154768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529324

RESUMEN

Real-time monitoring of microbial dynamics during fermentation is essential for wine quality control. This study developed a method that combines the fluorescent dye propidium monoazide (PMA) with CELL-qPCR, which can distinguish between dead and live microbes for Lactiplantibacillus plantarum. This method could detect the quantity of microbes efficiently and rapidly without DNA extraction during wine fermentation. The results showed that (1) the PMA-CELL-qPCR enumeration method developed for L. plantarum was optimized for PMA treatment concentration, PMA detection sensitivity and multiple conditions of sample pretreatment in wine environment, and the optimized method can accurately quantify 104-108 CFU/mL of the target strain (L. plantarum) in multiple matrices; (2) when the concentration of dead bacteria in the system is 104 times higher than the concentration of live bacteria, there is an error of 0.5-1 lg CFU/mL in the detection results. The optimized sample pretreatment method in wine can effectively reduce the inhibitory components in the qPCR reaction system; (3) the optimized PMA-CELL-qPCR method was used to monitor the dynamic changes of L. plantarum during the fermentation of Cabernet Sauvignon wine, and the results were consistent with the plate counting method. In conclusion, the live bacteria quantification method developed in this study for PMA-CELL-qPCR in L. plantarum wines is accurate in quantification and simple in operation, and can be used as a means to accurately monitor microbial dynamics in wine and other fruit wines.

18.
Foods ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174382

RESUMEN

Non-grapefruits with unique sensory properties and potential health benefits provide added value to fruit wine production. This study aimed to explore consumers' fruit wine preferences and descriptors for the varied fruit wines. First, 234 consumers participated in an online survey concerning their preferences for different wines (grape, blueberry, hawthorn, goji, Rosa roxburghii, and apricot). In addition, their attitudes towards general health interests, food neophobia, alcoholic drinks, and sweetness were collected. Grape wine and blueberry wine were the most favored wines, and goji wine was the least liked fruit wine sample. Moreover, 89 consumers were invited to evaluate 10 commercial fruit wines by using partial projective mapping based on appearance, aroma, and flavor (including taste and mouthfeel) to obtain a comprehensive sensory characterization. Multifactor analysis results showed that consumers could differentiate the fruit wines. Participants preferred fruit wines with "sweet", "sour", and "balanced fragrance", whereas "bitter", "astringent", "deep appearance", and "medicinal fragrance" were not preferred. Attitudes toward health, food neophobia, alcohol, and sweetness had less influence than taste and aroma (sensory attributes) on the preferences for fruit wine products. More frequent self-reported wine usage resulted in higher consumption frequency and liking ratings compared to non-users. Overall, the main factors influencing consumer preference for fruit wines were the sensory characteristics of the products, especially the taste.

19.
Foods ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900598

RESUMEN

As one of the most promising wine regions in China, the eastern foothills of the Helan Mountain (EFHM) in the Ningxia Hui Autonomous Region has attracted great attention recently. Geographically, EFHM is divided into six sub-regions, namely Shizuishan, Xixia, Helan, Qingtongxia, Yongning and Hongsipu. However, there have been few reports on the character and differences between wines in the six sub-regions. In this experiment, a total of 71 commercial Cabernet Sauvignon wines from six sub-regions were collected, and their phenolic compounds, visual properties and mouthfeel were investigated. The results showed that wines from the six sub-regions of EFHM showed distinctive phenolic profiles and could be distinguished through the OPLS-DA mode using 32 potential markers. In terms of color, Shizuishan wines showed higher a* values and lower b* values. The sensory evaluation showed that Hongsipu wines had higher astringency strength and lower tannin texture. The overall results implied that the phenolic compounds of wines in different sub-regions were affected by terroir conditions. To the best of our knowledge, this is the first time that a wide coverage of phenolic compounds has been analysed for wines from the sub-regions of EFHM, which could provide valuable information in deciphering the terroir of EFHM.

20.
Front Plant Sci ; 14: 1142139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938056

RESUMEN

Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and ß-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA