RESUMEN
In order to obtain an ultra-sensitive molecular biosensor, we designed an auto-biotinylated bifunctional protein nanowire (bFPNw) based on the self-assembly of a yeast amyloid protein, Sup35, to which protein G and a biotin acceptor peptide (BAP) were genetically fused. These auto-biotinylated bFPNws can transfer hundreds of commercially available diagnostic enzymes to an antigen-antibody complex via the biotin-avidin system, greatly enhancing the sensitivity of immune-biosensing. Compared to our previously reported seeding-induced bFPNws (Men et al., 2009), these auto-biotinylated bFPNws gave greater signal amplification, reduced non-specific binding and improved stability. The auto-biotinylated self-assembled bFPNw molecular biosensors were applied to detect Yersinia pestis (Y. pestis) F1 antigen and showed a 2000- to 4000-fold increase in sensitivity compared to traditional immunoassays, demonstrating the potential use of these self-assembling protein nanowires in biosensing.