Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 347: 119162, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778065

RESUMEN

Significant shock of climate change on crop yield will challenge the performance of bio-crop on substituting fossil energy to mitigate climate change. Taking cassava-to-ethanol system in Guangxi Province of South China as an example, we coupled a random forest (RF) model with 10 Global climate models (GCMs) outputs to predict the future cassava yields. Subsequently, the net energy value (NEV) and greenhouse gas (GHG) emissions of the cassava-to-ethanol system across varied topographies are assessed using a life cycle analysis. We demonstrate that the abrupt increases in temperatures are the primary contributors to declining yields. Notably, cassava yields in hilly regions decline more than those in plains and display greater variability among concentration pathway scenarios over time. Future NEV and GHG performance of cassava-to-ethanol will undergo significant decreases over time, especially within the high concentration pathway scenario (NEV decrease 28%, GHG increase 3.4% from 2006 to 2100). The performance reductions in hilly area are exacerbated by more harvest loss and labor and material inputs during the "field-to-wheel", negating its energy advantage over fossil fuels. Therefore, adopting a lower concentration pathway and favoring plantation in plains could maintain cassava-to-ethanol as a viable climate mitigation strategy. Our research also advances the methodological approach to climate change adaptation within the domain of life cycle assessment.


Asunto(s)
Gases de Efecto Invernadero , Manihot , Efecto Invernadero , Etanol , Cambio Climático , China , Verduras
2.
Sci Adv ; 10(30): eadn6106, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047098

RESUMEN

Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evidently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhancement to radiative suppression at high dust concentrations. The model also highlights meaningful correlations between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding its driving factors and physical mechanisms.

3.
Nat Commun ; 15(1): 4824, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844448

RESUMEN

Precipitation from tropical cyclones (TCs) can cause massive damage from inland floods and is becoming more intense under a warming climate. However, knowledge gaps still exist in changes of spatial patterns in heavy TC precipitation. Here we define a metric, DIST30, as the mean radial distance from centers of clustered heavy rainfall cells (> 30 mm/3 h) to TC center, representing the footprint of heavy TC precipitation. There is significant global increase in DIST30 at a rate of 0.34 km/year. Increases of DIST30 cover 59.87% of total TC impact areas, with growth especially strong in the Western North Pacific, Northern Atlantic, and Southern Pacific. The XGBoost machine learning model showed that monthly DIST30 variability is majorly controlled by TC maximum wind speed, location, sea surface temperature, vertical wind shear, and total water column vapor. TC poleward migration in the Northern Hemisphere contributes substantially to the DIST30 upward trend globally.

4.
PLoS One ; 12(9): e0182719, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28953893

RESUMEN

The decisions that individuals make when recovering from and adapting to repeated hazards affect a region's vulnerability in future hazards. As such, community vulnerability is not a static property but rather a dynamic property dependent on behavioral responses to repeated hazards and damage. This paper is the first of its kind to build a framework that addresses the complex interactions between repeated hazards, regional damage, mitigation decisions, and community vulnerability. The framework enables researchers and regional planners to visualize and quantify how a community could evolve over time in response to repeated hazards under various behavioral scenarios. An illustrative example using parcel-level data from Anne Arundel County, Maryland-a county that experiences fairly frequent hurricanes-is presented to illustrate the methodology and to demonstrate how the interplay between individual choices and regional vulnerability is affected by the region's hurricane experience.


Asunto(s)
Tormentas Ciclónicas , Humanos , Maryland , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA