Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Chem Soc Rev ; 53(7): 3350-3383, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38406832

RESUMEN

Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.

2.
Lipids Health Dis ; 23(1): 83, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509578

RESUMEN

OBJECTIVE: To enhance the detection, management and monitoring of Chinese children afflicted with sitosterolemia by examining the physical characteristics and genetic makeup of pediatric patients. METHODS: In this group, 26 children were diagnosed with sitosterolemia, 24 of whom underwent genetic analysis. Patient family medical history, physical symptoms, tests for liver function, lipid levels, standard blood tests, phytosterol levels, cardiac/carotid artery ultrasounds, fundus examinations, and treatment were collected. RESULTS: The majority (19, 73.1%) of the 26 patients exhibited xanthomas as the most prevalent manifestation. The second most common symptoms were joint pain (7, 26.9%) and stunted growth (4, 15.4%). Among the 24 (92.3%) patients whose genetics were analyzed, 16 (66.7%) harbored ABCG5 variants (type 2 sitosterolemia), and nearly one-third (8, 33.3%) harbored ABCG8 variants (type 1 sitosterolemia). Additionally, the most common pathogenic ABCG5 variant was c.1166G > A (p.Arg389His), which was found in 10 patients (66.7%). Further analysis did not indicate any significant differences in pathological traits among those carrying ABCG5 and ABCG8 variations (P > 0.05). Interestingly, there was a greater abundance of nonsense variations in ABCG5 than in ABCG8 (P = 0.09), and a greater frequency of splicing variations in ABCG8 than ABCG5 (P = 0.01). Following a change in diet or a combination of ezetimibe, the levels of cholesterol and low-density lipoprotein were markedly decreased compared to the levels reported before treatment. CONCLUSION: Sitosterolemia should be considered for individuals presenting with xanthomas and increased cholesterol levels. Phytosterol testing and genetic analysis are important for early detection. Managing one's diet and taking ezetimibe can well control blood lipids.


Asunto(s)
Hipercolesterolemia , Enfermedades Intestinales , Errores Innatos del Metabolismo Lipídico , Fitosteroles , Fitosteroles/efectos adversos , Xantomatosis , Humanos , Niño , Lipoproteínas/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Fitosteroles/genética , Colesterol , Ezetimiba/uso terapéutico
3.
Angew Chem Int Ed Engl ; 63(8): e202316706, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38126129

RESUMEN

Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording.

4.
Macromol Rapid Commun ; 43(18): e2100899, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35247010

RESUMEN

The molecular diversity of aggregation-induced emission remains a challenge due to the limitation of conventional synthesis methods. Here, a series of novel neutral and cationic conjugated polymers composed of various ratios of tetraarylethylene (TAE) containing a bridged oxygen (O) and fluorene (F) units is designed and synthesized via the geminal cross-coupling (GCC) of 1,1-dibromoolefins. The incorporation of TAE segments into the conjugated backbone of polyfluorene produces pronounced aggregation-induced ratiometric fluorescence, i.e., aggregation-induced emission (AIE) at 520-600 nm and grows synergistically with aggregations-caused quenching (ACQ) at 400-450 nm. The content of fluorene unit in the polymer backbones determines the intensity of the initial fluorescence in the blue light region. The huge distinction (about 150 nm) in dual emission wavelengths caused by the environment change makes these conjugated polyelectrolytes particularly suitable for ratiometric fluorescence sensing. Based on electrostatic interaction mechanism, the gradual addition of heparin into the cationic conjugated polymers aqueous solutions can induce dual-color fluorescence changes with a detection limit of 9 × 10-9 m. This work exhibits the great facility of using GCC reaction to synthesis the conjugated TAE polymers with superior AIE properties and special functions.


Asunto(s)
Fluorenos , Polímeros , Cationes , Fluorescencia , Heparina , Oxígeno , Polielectrolitos , Espectrometría de Fluorescencia
5.
Chem Eng J ; 446: 137322, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35663505

RESUMEN

COVID-19 threatens human life because of the super destructiveness produced from its coronal morphology and strong transmembrane infection based on spike glycoprotein. Inspired by the coronal morphology of COVID-19 and its means of infecting, we designed an "artificial virus" with coronal morphology based on the concept of "defeating superbacteria with superviruses" by self-assembling a transacting activator of transduction peptide with triple-shell porous graphitic carbon nitride (g-C3N4) embedded with cobalt nanoparticles to forcefully infect methicillin-resistant Staphylococcus aureus (MRSA). The results confirmed that this "artificial virus" had unique properties of crossing the bacterial cell membrane barrier, heating the internal bacterial microenvironment and triggering ROS outbreak, based on its coronal morphology, membrane penetration, temperature-rising and heat insulation, oxidase-like activity and excellent visible-light harvesting properties. It had a high sterilization efficiency of 99.99% at 20 min, which was 18.6 times that of g-C3N4, and the efficiency remained at 99.99% after 3 rounds of recycling and reuse. Additionally, it can rapidly inactivate bacteria in river water and accelerate wound healing.

6.
Angew Chem Int Ed Engl ; 61(20): e202117158, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35102683

RESUMEN

In photoswitches that undergo fluorescence switching upon ultraviolet irradiation, photoluminescence and photoisomerization often occur simultaneously, leading to unstable fluorescence properties. Here, we successfully demonstrated reversible solid-state triple fluorescence switching through "Pump-Trigger" multiphoton manipulation. A novel fluorescence photoswitch, BOSA-SP, achieved green, yellow, and red fluorescence under excitation by pump light and isomerization induced by trigger light. The energy ranges of photoexcitation and photoisomerization did not overlap, enabling appropriate selection of the multiphoton light for "pump" and "trigger" photoswitching, respectively. Additionally, the large free volume of the spiropyran (SP) moiety in the solid state promoted reversible photoisomerization. Switching between "pump" and "trigger" light is useful for three-color tunable switching cell imaging, which can be exploited in programmable fluorescence switching. Furthermore, we exploited reversible dual-fluorescence switching in a single molecular system to successfully achieve two-color super-resolution imaging.


Asunto(s)
Rayos Ultravioleta , Microscopía Fluorescente
7.
Bioorg Chem ; 116: 105345, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560559

RESUMEN

Chronic neuroinflammation is closely associated with the development of neurodegenerative diseases, including Alzheimer's disease (AD). In the current study, 13 anti-neuroinflammatory compounds were isolated from Eucommia ulmoides Oliv. leaves. Among these compounds, trans-sinapaldehyde (6), 3',4',5,7-tetrahydroxy-3-methylflavone (7), and amarusine A (13) were isolated from E. ulmoides leaves for the first time. The ursane-type C29-triterpenoid, ulmoidol (ULM, 9), significantly inhibited the production of proinflammatory mediators and reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, ULM inhibited the cluster of differentiation 14 (CD14)/Toll-like receptor 4 (TLR4) signaling pathway and consequently limited the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Notably, electrophoretic mobility shift assay (EMSA) and molecular docking analyses indicated that ULM could prevent PU box binding-1 (PU.1) from binding to DNA, suggesting that PU.1 might be a potential ULM target. In conclusion, ULM alleviates neuroinflammatory responses in microglia, which could be partly explained by its targeting of PU.1 and the resulting suppression of the TLR4/MAPK/NF-κB signaling pathways. These results suggested that ULM may have therapeutic potential as an agent for treating neuroinflammation-related neurodegenerative diseases.


Asunto(s)
Eucommiaceae/química , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Hojas de la Planta/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Triterpenos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo , Triterpenos/aislamiento & purificación
8.
J Am Chem Soc ; 142(16): 7497-7505, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32223234

RESUMEN

A water-soluble probe, TPA-1OH, with aggregation-induced emission activity is synthesized and used for expedient real-time fluorescence in situ visualization of latent fingerprints (LFPs). A TPA-1OH aqueous solution exhibits nonfluorescence in pure water while strong fluorescence upon molecular aggregation induced by addition of poor solvent. Fluorescence images of LFPs on a variety of substrates, including rough surfaces such as walls, bricks, and paper, are developed under 405 nm light, by soaking in or spraying with a TPA-1OH aqueous solution (30 µM) without any necessity of organic cosolvents and post-treatment steps. The probe is noncytotoxic at a concentration lower than 50 µM. The development process of LFPs is demonstrated by real-time fluorescence in situ imaging. The exponential relationship between the relative fluorescence intensity and time is deduced from the fitting curve. The LFP images developed by TPA-1OH are evident and intact enough to allow that the level 1-3 details are displayed and analyzed. Noteworthily, the level 3 details of LFPs such as the fingerprint ridge width and the characteristics of the sweat pores are evidently visible under fluorescence microscopy. Even the nanoscopic details exceeding level 3 are visualized under super-resolution microscopy with sub-50 nm optical resolution.

9.
Bioconjug Chem ; 31(10): 2303-2311, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33002360

RESUMEN

Protein misfolding and denaturation, represented by amyloid fibrillation, are associated with many diseases. However, as a general chemical biological process, the dynamic structure information on amyloid fibrillation has not been demonstrated categorically. Herein, hen egg white lysozyme (HEWL) was used as the model protein of interest to realize in situ nanoscale imaging of protein fibrillation process using the fluorophores with aggregation-induced emission (AIE) activity. The AIE-active fluorophores exhibit the reversible capability of association and dissociation with ß-sheet structure and thus dynamic binding-induced emission, which causes the spontaneous switching of fluorescence. The entire HEWL denaturation process induced by sodium dodecyl sulfate (SDS) at ambient conditions was demonstrated in detail by using two AIE-active fluorophores (TPE-NaSO3 and PD-BZ-OH) through reversible electrostatic interaction and specific labeling between AIE probes and ß-sheet structures of amyloid fibrils, respectively. The results indicate that PD-BZ-OH is more specific AIE probe for amyloid fibrils than TPE-NaSO3. In comparison, the SEM and TEM results show the same denaturation process of protein fibrillation induced by SDS at different concentrations. The static super-resolution imaging of amyloid fibrils is performed with a resolution of 35 nm using PD-BZ-OH aqueous solution without additional auxiliary conditions. The dynamic evolution process of HEWL amyloid fibrillation is in situ visualized through super-resolution fluorescent microscopy with nanoscale resolution. Both static and dynamic super-resolution imaging of amyloid fibrillation provides detailed nanoscale structure information exceeding 50 nm resolution, which is of great significance in the exploration of amyloid fibrillation and related diseases.


Asunto(s)
Amiloide/química , Muramidasa/química , Agregado de Proteínas , Amiloide/ultraestructura , Animales , Pollos , Citrulinación , Clara de Huevo/química , Conformación Proteica en Lámina beta
10.
Angew Chem Int Ed Engl ; 59(22): 8560-8570, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31532862

RESUMEN

Unprecedented dual aggregation-induced emission (AIE) behavior based on a steric-hindrance photochromic system is presented, with incorporation one or two bulky aryl groups, resulting in different flexibleness. The dual AIE behavior of open and closed isomers can be explained by restriction of intramolecular rotation (RIR), restriction of intramolecular vibration (RIV), and intermolecular stacking. The large bulky benzothiophene causes restricted rotation, enhancing the emission of open form in solution and weak π-π molecular packing, thereby efficiently enhancing the luminescence performance in the solid state. With incorporation of two large bulky benzothiophene groups, BBTE possesses the most outstanding AIE activity, undergoing highly efficient and reversible off-to-on fluorescence in film upon alternating UV and visible light irradiation along with excellent fatigue resistance. The off-to-on fluorescent photoswitch is successfully established in super resolution imaging.

11.
Chemistry ; 24(61): 16251-16256, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30242911

RESUMEN

A new photoswitchable near-infrared fluorophore (TDI-4DTE) with a symmetric structure exhibited reversible photo-controllable self-assembly and disassembly. The modification of π-conjugated terrylenediimide with four dithienylethene groups not only induced photoswitchable near-infrared fluorescence, but also photoregulated reversible precipitation-dissolution with microscopic and macroscopic polymorphism. Upon 302 nm UV-light irradiation, a noticeable precipitation was observed within seconds. The precipitate was gradually dissolved again in half an hour upon visible light irradiation. Different microscopic morphologies of the precipitates, including nanoparticles, nanofibrils and nanosheets, were observed when altering the intensity of the 302 nm light irradiation, indicating the dynamic control process of self-assembly. Upon UV-light irradiation, TDI-4DTE nanosheets were also obtained as a solid polymeric film, whereas well-defined nanoribbons with molecular monolayer thickness formed at the oil/water interface with slower assembly dynamics.

12.
Faraday Discuss ; 196: 439-454, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905612

RESUMEN

We report the design and synthesis of a tetraphenylethene substituted with naphthalimide at the 4, 6 positions, named NI-2TPE. NI-2TPE exhibits strong solvent-dependent emission properties with combined ICT and AIE characteristics in THF-H2O systems. This probe was used directly on test papers to distinguish normal organic solvents using their emission colours under UV light based on its AIE and ICT nature. Thanks to the vinyl group in NI-2TPE, we synthesized a copolymer of NIPAM and NI-2TPE, termed P(NIPAM-co-NI-2TPE). The resulting polymer is highly soluble and fluorescent in water (ΦF = 15.4%). Due to the well-known thermo-responsive character of NIPAM, P(NIPAM-co-NI-2TPE) exhibits an interesting fluorescence change in response to various temperatures. Due to the thermo-induced shrinking of the PNIPAM chain, the fluorescence intensity gradually increased from 20 to 34 °C. As the temperature further increased from 34 to 90 °C, the fluorescence intensity decreased sharply, which was caused by the well-known thermal effects. Furthermore, we synthesized a P(HEA-co-NI-2TPE-TPP acrylate) copolymer, in which HEA is a hydrophilic unit, TPP is a mitochondria label and NI-2TPE a fluorescent probe. The corresponding polymer probe is highly soluble in water with FLQY = 7% and we have further applied this probe as a mitochondria targeted imaging tracker in HeLa cells successfully.


Asunto(s)
Células/química , Fluorescencia , Colorantes Fluorescentes/química , Naftalimidas/química , Imagen Óptica , Estilbenos/química , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Imagen Molecular , Estructura Molecular , Polimerizacion , Rayos Ultravioleta
13.
Small ; 12(47): 6547-6552, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27555445

RESUMEN

Monodisperse AIE (aggregation-induced emission)-active conjugated polymer nanoparticles are synthesized by dispersion polymerization using geminal Suzuki cross-coupling of 1,1-dibromoolefins. The size of the nanoparticles can be adjusted by varying the concentration of the initial monomer.

14.
Photochem Photobiol Sci ; 15(11): 1433-1441, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27739551

RESUMEN

Photoswitchable fluorophores are promising in single-molecule optical devices and super-resolution fluorescence imaging, especially in single-molecule photo-activated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). However, the scarcity of current photoswitchable fluorophores stimulates researchers to develop complicated optical systems and processing software, in accordance with the limited photoswitchable fluorescent proteins and organic fluorophores. Previous efforts to develop synthetic photoswitchable fluorophores have exhibited their promising potential in super-resolution fluorescence imaging. Here, we have designed and synthesized a fluorescence molecular switch with reversible green emission, a napthalimide-hexaarylbiimidazole conjugate (NI-N-HABI), which exhibits strong fluorescence in the emissive state, with fast thermal fading of the photochromism and spontaneous fluorescence recovery after photobleaching (FRAP) induced by blue-light. The photoswitchable fluorophore enables the red-edge wavelength of the optical response to red-shift from the initial near-UV region at less than 400 nm, to 500 nm. The relatively fast fading speed of NI-N-HABI and its sensitivity to longer blue-light irradiation (400-500 nm) have allowed simplification of the optical microscopic system from a two-wavelength laser source to a single-wavelength laser. We applied NI-N-HABI in single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for the self-assembly and solvent annealing of amphiphilic block polymers, with 50 nm of optical resolution. Single-wavelength-controlled dynamic super-resolution fluorescence imaging facilitates nanoscale optical visualization for the dynamic physical and chemical fluctuation processes of stimuli-responsive nanostructures.

15.
J Am Chem Soc ; 137(13): 4312-5, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25774573

RESUMEN

A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.

16.
J Am Chem Soc ; 137(7): 2436-9, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25668069

RESUMEN

One approach toward optical nanoimaging involves sequential molecular localization of photoswitchable fluorophores to achieve high resolution beyond optical limit of diffraction. Block copolymer micelles assembled from polystryrene-block-poly(ethylene oxide) block copolymers (PSt-b-PEO) are visualized in optical nanoimaging by staining the polystyrene blocks with spiropyrans (SPs). SPs localized in hydrophobic phase of block copolymer micelles exhibit reversible fluorescence on-off switching at alternating irradiation of UV and visible light. Phase-selective distribution of SPs in block copolymer micelles enables optical nanoimaging of microphase structures of block copolymer self-assembly at 50-nm resolution. To date, this is the sturdiest realization of optical nanoimaging with subdiffraction resolution for solution self-assembly of block copolymers.


Asunto(s)
Nanotecnología/métodos , Imagen Óptica/métodos , Polímeros/química , Micelas
17.
Int J Biol Macromol ; 270(Pt 1): 132405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754661

RESUMEN

Eucommia ulmoides rubber (EUR) is a high-quality natural rubber resource, which can be extracted from different organs of the Eucommia ulmoides tree. In this study, EUR was isolated from the leaves, barks, and pericarps, and the structural characteristics and physicochemical properties of EUR were systematically determined. The accumulation and distribution of EUR in different tissues were assessed through in situ observations combined with cellular and subcellular scales. The preliminary analyses indicated that the variations in the physicochemical properties of EUR across different tissues were associated with its accumulation microstructure. Further analyses by SEM and TEM showed that the initial cell differentiation and fusion resulted in the formation of tubular structures without any nucleus. A limited number of rubber particles were generated within the cytoplasm, concurrent with aggregation and fusion. Eventually, rubber particles filled the entire cytoplasm, and organelles disappeared to form highly aggregated filamentous structures. In addition, the number and area of EUR-containing cells were closely related to the organization sizes of barks and leaves. This study provided valuable insights into Eucommia ulmoides histology and the rubber industry.


Asunto(s)
Eucommiaceae , Hemiterpenos , Goma , Eucommiaceae/química , Hemiterpenos/química , Goma/química , Goma/metabolismo , Hojas de la Planta/química , Corteza de la Planta/química , Butadienos/metabolismo , Butadienos/química
18.
J Colloid Interface Sci ; 637: 20-32, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36682115

RESUMEN

Adhesive hydrogels have emerged as promising candidates to solve life-threatening infectious skin injuries. However, the inadequate mechanical characteristics and biological adherence limit the traditional wound dressing unable to adapt to high-frequency movement and real-time monitoring of wound healing, calling for the development of bioadhesive materials guided wound healing. In this work, a multifunctional bioadhesive hydrogel with double colorimetric-integrated of polyethylene glycol (PVA)-dextran (Dex)-borax-bromothymol blue (BTB)-fluorescein thiocyanate (FITC) and functionalization by tungsten disulfide-catechol nanozyme (CL/WS2) was created. Hydrogel is a perfect biological adhesive, which can achieve repeatable and strong tissue adhesion strength (8.3 ± 0.6 kPa), which is 1.66 times that of commercial dressings. Based on the strong biological adhesion of the hydrogel, a sensor is integrated into the hydrogel to collect visual image of bacterial infection from a smartphone and transform it into an on-site pH signal for remote evaluation of the wound's dynamic status in real time. Ultimately, the adhesiveness hydrogel has high worth in managing the burden related to wound healing and paving the way for intelligent wound management in the future.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Hidrogeles/farmacología , Adhesividad , Vendajes , Concentración de Iones de Hidrógeno , Antibacterianos
19.
Chemistry ; 18(50): 16037-45, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23081687

RESUMEN

We report the optical properties of tetraphenylethene (TPE) and other TPE derivatives functionalised with an octyl group (TPE-OCT) and polyethyleneglycol group (TPE-PEG) in the side chain. We compared TPE-OCT and TPE-PEG with TPE in both organic solvents and under aqueous conditions. All materials exhibit aggregation-induced emission, however, uncommonly, TPE-PEG seems to aggregate in aqueous solution with enhanced photoluminescence quantum efficiency (PLQE) relative to that in organic solvents. All three materials can be photo-oxidised in solution to their diphenylphenanthrene derivative by irradiation with UV light (at both ≈1 and ≈5 mW cm(-2)), with a subsequent enhancement in PL efficiency. The electron-donating ether group increases the rate of oxidation relative to bare TPE and also photo-oxidation was shown to be solvent and concentration dependent. Finally, photo-oxidation was also demonstrated in the aggregate state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA