Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 36(11): e5005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37547964

RESUMEN

Deep learning based parallel imaging (PI) has made great progress in recent years to accelerate MRI. Nevertheless, it still has some limitations: for example, the robustness and flexibility of existing methods are greatly deficient. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibrationless PI reconstruction, coined the weighted k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realize calibrationless PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well learned k-space generative prior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA