RESUMEN
Enterovirus C99 (EV-C99) is a newly identified EV serotype within the species Enterovirus C. Few studies on EV-C99 have been conducted globally. More information and research on EV-C99 are needed to assess its genetic characteristics, phylogenetic relationships, and associations with enteroviral diseases. Here, the phylogenetic characteristics of 11 Chinese EV-C99 strains have been reported. The full-length genomic sequences of these 11 strains show 79.4-80.5% nucleotide identity and 91.7-94.3% amino acid (aa) identity with the prototype EV-C99. A maximum likelihood phylogenetic tree constructed based on the entire VP1 coding region identified 13 genotypes (A-M), revealing a high degree of variation among the EV-C99 strains. Phylogeographic analysis showed that the Xinjiang Uygur Autonomous Region is an important source of EV-C99 epidemics in various regions of China. Recombination analysis revealed inter-serotype recombination events of 16 Chinese EV-C99 strains in 5' untranslated regions and 3D regions, resulting in the formation of a single recombination form. Additionally, the Chinese strain of genotype J showed rich aa diversity in the P1 region, indicating that the genotype J of EV-C99 is still going through variable dynamic changes. This study contributes to the global understanding of the EV-C99 genome sequence and holds substantial implications for the surveillance of EV-C99.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/genética , Filogenia , Infecciones por Enterovirus/epidemiología , China/epidemiología , Genotipo , Genoma ViralRESUMEN
Enterovirus C116 (EV-C116) is a new member of the enterovirus C group which is closely associated with several infectious diseases. Although sporadic studies have detected EV-C116 in clinical samples worldwide, there is currently limited information available. In this study, two EV-C-positive fecal specimens were detected in apparently healthy children, which harbored low abundance, through meta-transcriptome sequencing. Based on the prototypes of several EV-Cs, two lineages were observed. Lineage 1 included many types that could not cause EV-like cytopathic effect in cell culture. Three genogroups of EV-C116 were divided in the maximum likelihood tree, and the two strains in this study (XZ2 and XZ113) formed two different lineages, suggesting that EV-C116 still diffuses worldwide. Obvious inter-type recombination events were observed in the XZ2 strain, with CVA22 identified as a minor donor. However, another strain (XZ113) underwent different recombination situations, highlighting the importance of recombination in the formation of EV-Cs biodiversity. The EV-C116 strains could propagate in rhabdomyosarcoma cell cultures at low titer; however, EV-like cytopathic effects were not observed. HEp-2, L20B, VERO, and 293T cell lines did not provide an appropriate environment for EV-C116 growth. These results challenge the traditional recognition of the uncultured nature of EV-C116 strains and explain the difficulty of clinical detection.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Niño , Humanos , Enterovirus/genética , Infecciones por Enterovirus/epidemiología , China/epidemiología , Antígenos Virales , Células HEK293RESUMEN
BACKGROUND: Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. METHODS: The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [125I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. RESULTS: We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. CONCLUSIONS: This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers.
Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ratones , Línea Celular Tumoral , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Doxorrubicina/farmacología , Ratones Endogámicos BALB C , FemeninoRESUMEN
Polio cases can be missed by acute flaccid paralysis (AFP) case surveillance alone, emphasizing the importance of environmental surveillance (ES). In this study, to investigate the serotype distribution and epidemiological trends of poliovirus (PV), we characterized PV isolated from domestic sewage in Guangzhou City, Guangdong Province, China from 2009 to 2021. A total of 624 sewage samples were collected from the Liede Sewage Treatment Plant, and the positive rates of PV and non-polio enteroviruses were 66.67% (416/624) and 78.37% (489/624), respectively. After sewage sample treatment, each sewage sample was inoculated in six replicate tubes of three cell lines, and 3370 viruses were isolated during the 13-year surveillance period. Among these, 1086 isolates were identified as PV, including type 1 PV (21.36%), type 2 PV (29.19%), and type 3 PV (49.48%). Based on VP1 sequences, 1057 strains were identified as Sabin-like, 21 strains were high-mutant vaccines, and eight strains were vaccine-derived poliovirus (VDPV). The numbers and serotypes of PV isolates in sewage were influenced by the vaccine switch strategy. After type 2 OPV was removed from the trivalent oral PV (OPV) vaccine and a bivalent OPV (bOPV) was adopted in May 2016, the last type 2 PV strain was isolated from sewage, with no detection thereafter. Type 3 PV isolates increased significantly and became the dominant serotype. Before and after the second vaccine switch in January 2020, that is, from the first dose of IPV and second-fourth doses of bOPV to the first two doses of IPV and third-fourth doses of bOPV, there was also a statistical difference in PV positivity rates in sewage samples. Seven type 2 VDPVs and one type 3 VDPV were identified in sewage samples in 2009-2021, and phylogenetic analysis indicated that all VDPVs isolated from ES in Guangdong are newly discovered VDPVs, different from VDPV previously discovered in China, and were classified as ambiguous VDPV. It is noteworthy that no VDPV cases were reported in AFP case surveillance in the same period. In conclusion, continued PV ES in Guangzhou since April 2008 has been a useful supplement to AFP case surveillance, providing an important basis for evaluating the effectiveness of vaccine immunization strategies. ES improves early detection, prevention, and control; accordingly, this strategy can curb the circulation of VDPVs and provide a strong laboratory basis for maintaining a polio-free status.
Asunto(s)
Poliomielitis , Poliovirus , Humanos , Aguas del Alcantarillado , Filogenia , alfa-Fetoproteínas , Vacuna Antipolio Oral , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Monitoreo del AmbienteRESUMEN
Enterovirus C96 (EV-C96) is a recently discovered serotype belonging to enterovirus C species. It had been isolated from patients with acute flaccid paralysis, hand, foot, and mouth disease, diarrhea, healthy people, or environmental specimens. Despite increasing reports of the virus, the small number of full-length genomes available for EV-C96 has limited molecular epidemiological studies. In this study, newly collected rare EV-C96 strains in China from 1997 to 2020 were combined with sequences available in GenBank for comprehensive analyses. Sequence analysis revealed that the nucleotide sequence similarity of EV-C96 and the prototype strain (BAN00-10488) was 75%-81.8% and the amino acid sequence similarity was 85%-94.9%. EV-C96 had a high degree of genetic variation and could be divided into 15 genogroups. The mean evolutionary rate was 5.16 × 10-3 substitution/site/year, and the most recent common ancestor was dated to 1925. A recombination analysis revealed that EV-C96 may be a recombinant derived from other serotypes in the EV-C group in the nonstructural protein coding region. This comprehensive and integrated analysis of the whole genome sequence of EV-C96 provides valuable data for further studies on the molecular epidemiology of EV-C96 worldwide.
Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Análisis de Secuencia de ADN , Genoma Viral , Infecciones por Enterovirus/epidemiología , Secuenciación Completa del Genoma , China/epidemiología , FilogeniaRESUMEN
A 2.5-year-old pediatric patient with acute flaccid paralysis was diagnosed with primary immunodeficiency (PID) in Ningxia Province, China, in 2011. Twelve consecutive stool specimens were collected from the patient over a period of 10 months (18 February 2011 to 20 November 2011), and 12 immunodeficiency vaccine-derived poliovirus (iVDPV) strains (CHN15017-1 to CHN15017-12) were subsequently isolated. Nucleotide sequencing analysis of the plaque-purified iVDPVs revealed 2%-3.5% VP1-region differences from their parental Sabin 3 strain. Full-length genome sequencing showed they were all Sabin 3/Sabin 1 recombinants, sharing a common 2C-region crossover site, and the two key determinants of attenuation (U472C in the 5' untranslated region and T2493C in the VP1 region) had reverted. Temperature-sensitive experiments demonstrated that the first two iVDPV strains partially retained the temperature-sensitive phenotype's nature, while the subsequent ten iVDPV strains distinctly lost it, possibly associated with increased neurovirulence. Nineteen amino-acid substitutions were detected between 12 iVDPVs and the parental Sabin strain, of which only one (K1419R) was found on the subsequent 10 iVDPV isolates, suggesting this site's potential as a temperature-sensitive determination site. A Bayesian Monte Carlo Markov Chain phylogenetic analysis based on the P1 coding region yielded a mean iVDPV evolutionary rate of 1.02 × 10-2 total substitutions/site/year, and the initial oral-polio-vaccine dose was presumably administered around June 2009. Our findings provide valuable information regarding the genetic structure, high-temperature growth sensitivity, and antigenic properties of iVDPVs following long-term evolution in a single PID patient, thus augmenting the currently limited knowledge regarding the dynamic changes and evolutionary pathway of iVDPV populations with PID during long-term global replication.
Asunto(s)
Síndromes de Inmunodeficiencia , Poliomielitis , Poliovirus , Humanos , Poliomielitis/prevención & control , Filogenia , Deriva y Cambio Antigénico , Teorema de Bayes , Vacuna Antipolio Oral , Síndromes de Inmunodeficiencia/complicaciones , Evolución MolecularRESUMEN
Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 (nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgolimab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibitors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosupportive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individualized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and relieve treatment resistance.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Estudios Clínicos como Asunto , Terapia Combinada , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias/diagnóstico , Neoplasias/etiología , Neoplasias/mortalidad , Pronóstico , Resultado del TratamientoRESUMEN
BACKGROUND: Echovirus 9 (E9) is associated with a wide variety of diseases and medical conditions, and the clinical symptoms of sporadic cases caused by E9 often are severe. With a high global prevalence, E9 has caused multiple outbreaks worldwide. However, little is known about the genetic and geographic population dynamics of E9. METHOD: A total of 131 VP1 gene sequences, including15 generated in this study and 116 obtained from GenBank, were used to coestimate time-resolved phylogenies to infer viral evolution and transmission in worldwide. Overlapping fragments representing whole genomes were amplified by reverse transcription polymerase chain reaction (RT-PCR) using specific primers. Then, we reported the genetic characteristics of fifteen E9 strains in the Chinese Mainland. Similarity plots and bootscanning analysis were used to determine recombination patterns of E9. RESULTS: The estimated mean evolutionary rate of global E9 VP1 gene was 4.278 × 10-3 substitutions per site per year (95% confidence interval [CI], 3.822 × 10-3/site/year to 4.710 × 10-3/site/year), and the common ancestor of E9 likely emerged around 1868 (95% CI, 1840 to 1892). The full-length genomic sequences of the fifteen E9 strains showed 76.9-79.6% nucleotide identity and 95.3-95.9% amino acid identity with E9 Barty strain. 11 of 15 E9 whole genome sequence present four recombination patterns, and E9 recombinants have extensive genetic exchanges in the 2C and P3 regions with other Enterovirus B (EV-B) circulated in China. Four of six E9 strains were temperature sensitive, and two were temperature resistant, and a comparative genomics analysis suggested that 411, 865 and 867 amino acid substitution in the P1 region was related to temperature sensitivity. CONCLUSION: This study highlights a persistent transmission network of E9 in worldwide, provides valuable information regarding the molecular epidemiology of E9.
Asunto(s)
Echovirus 9 , China/epidemiología , Enterovirus Humano B/genética , Evolución Molecular , Genoma Viral , Filogenia , Recombinación GenéticaRESUMEN
BACKGROUND: Coxsackievirus B3 (CVB3) has emerged as an active pathogen in myocarditis, aseptic meningitis, hand, foot, and mouth disease (HFMD), and pancreatitis, and is a heavy burden on public health. However, CVB3 has not been systematically analyzed with regard to whole-genome diversity and recombination. Therefore, this study was undertaken to systematically examine the genetic characteristics of CVB3 based on its whole genome. METHODS: We combined CVB3 isolates from our national HFMD surveillance and global sequences retrieved from GenBank. Phylogenetic analysis was performed to examine the whole genome variety and recombination forms of CVB3 in China and worldwide. RESULTS: Phylogenetic analysis showed that CVB3 strains isolated worldwide could be classified into clusters A-E based on the sequence of the entire VP1 region. The predominant CVB3 strains in China belonged to cluster D, whereas cluster E CVB3 might be circulated globally compared to other clusters. The average nucleotide substitution rate in the P1 region of CVB3 was 4.82 × 10-3 substitutions/site/year. Myocarditis was more common with cluster A. Clusters C and D presented more cases of acute flaccid paralysis, and cluster D may be more likely to cause HFMD. Multiple recombination events were detected among CVB3 variants, and there were twenty-three recombinant lineages of CVB3 circulating worldwide. CONCLUSIONS: Overall, this study provides full-length genomic sequences of CVB3 isolates with a wide geographic distribution over a long-term time scale in China, which will be helpful for understanding the evolution of this pathogen. Simultaneously, continuous surveillance of CVB3 is indispensable to determine its genetic diversity in China as well as worldwide.
Asunto(s)
Enfermedad de Boca, Mano y Pie , Miocarditis , China/epidemiología , Enterovirus Humano B/genética , Variación Genética , Genoma Viral , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , FilogeniaRESUMEN
The C4 sub-genotype of Enterovirus 71 (EV71) has been identified as the most dominant sub-genotype circulating in the Chinese mainland since 1998. The circulation situation of EV71 before 1998 is not well established due to insufficient experimental data. The C1 subgenotype of EV71 has not yet been reported in the Chinese mainland by now. Based on the AFP surveillance system of the mainland of China, this study conducted a retrospective study of AFP cases for 1985-1999: a strain of EV-A71 C1 subgenotype was found. To our knowledge, this strain (SD92-41) is the first C1 sub-genotype reported in the Chinese mainland. This study demonstrates that the C1 gene subtype also appeared in the Chinese mainland, but it is unknown whether it is an imported or a local epidemic strain. With sufficient information known from retrospective studies, the source of the SD92-41 strain will be identified and the prevalence of EV-A71 in the Chinese mainland before 1998 will be clearer.
Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , China/epidemiología , Enterovirus/genética , Enterovirus Humano A/genética , Infecciones por Enterovirus/epidemiología , Genotipo , Filogenia , Estudios RetrospectivosRESUMEN
BACKGROUND: China implemented the globally synchronized switch from trivalent oral poliovirus vaccine (tOPV) to bivalent OPV (bOPV) and introduced 1 dose of inactivated poliovirus vaccine on 1 May 2016. We assessed the impact of the switch on the immunity level against poliovirus, especially type 2. METHODS: Children born between 2014 and 2017, who were brought to the hospitals in Urumqi city, Xinjiang Province in 2017, were enrolled and blood samples were collected to test for antibody titers against poliovirus. A comparison of seroprevalence between the children born before (preswitch group) and after the switch (postswitch group) was performed to assess the impact of the switch on the immunity level against polio. RESULTS: A total of 172 subjects were enrolled. The overall seroprevalences were 98.8%, 79.1%, and 98.3% for types 1, 2, and 3, respectively. Seroprevalence for type 2 significantly decreased from 91.6% in the preswitch group to 67.4% in the postswitch group, but no statistically significant change was observed for both types 1 and 3. CONCLUSIONS: The switch from tOPV to bOPV can provide high-level immunity against types 1 and 3 but not against type 2, indicating a high risk of type 2 vaccine-derived poliovirus emergence and transmission.
Asunto(s)
Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio Oral/administración & dosificación , Poliovirus/inmunología , Preescolar , China , Estudios Transversales , Femenino , Humanos , Esquemas de Inmunización , Lactante , Recién Nacido , Masculino , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio Oral/inmunología , Estudios SeroepidemiológicosRESUMEN
BACKGROUND: Parechoviruses (PeV-As), which constitute a new genus within the family Picornaviridae, have been associated with numerous localized outbreaks of serious diseases, such as coryza, pneumonia, maculopapular exanthem, and conjunctivitis. However, to the best of our knowledge, only a few laboratories worldwide conduct tests for the identification of this group of viruses. Therefore, in this study, we aimed to develop and validate a real-time RT-PCR assay for the identification of PeV-As. METHODS: To design and validate a real-time PCR primer-probe targeting the 5'-UTR region of PeV-As, the 5'-UTR sequences of PeV-As available in GenBank were aligned using the MUSCLE algorithm in MEGA v7.0. Thereafter, the highly conserved 5'-UTR region was selected, and its primer-probe sequence was designed using Primer Premier v5.0. This primer-probe sequence was then evaluated for specificity, sensitivity, and repeatability, and for its validation, it was tested using fecal samples from 728 healthy children living in Beijing (China). RESULTS: The PeV-A real-time RT-PCR assay detected only the RNA-positive standards of PeV-A genotypes (1-8, 14, 17, and 18), whereas 72 serotypes of non-PeV-A EV viruses were undetected. In addition, the VP1 region of these 11 PeV-A genotypes that tested positive were amplified using the primers designed in this study. Typing results indicated that eight, one, and two strains of the 11 were PeV-A1, PeV-A4, and PeV-A6, respectively. We also determined and presented the genetic characterization and phylogenetic analyses results corresponding to these 11 VP1 region sequences. Furthermore, real-time RT-PCR assay showed good sensitivity with LOD of 102 copies/µL. Positive results in eight parallel experiments at each concentration gradient from 107 copies/µL to 102 copies/µL, indicating good repeatability. CONCLUSION: Our findings suggested that the real-time RT-PCR assay developed in this study can be applied for routine PeV-A identification. We detected PeV-A1, 4 and 6 genotypes in the 728 faecal samples using this method. Additionally, we believe that our results will serve as a foundation for further studies on PeV-As and facilitate the expansion of the gene sequence information available in GenBank.
Asunto(s)
Parechovirus , Picornaviridae , Niño , Humanos , Parechovirus/genética , Filogenia , Picornaviridae/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y EspecificidadRESUMEN
In order to discover the causes of a coxsackievirus B4 (CV-B4)-associated hand, foot, and mouth disease (HFMD) outbreak and to study the evolutionary characteristics of the virus, we sequenced isolates obtained during an outbreak for comparative analysis with previously sequenced strains. Phylogenetic and evolutionary dynamics analysis was performed to examine the genetic characteristics of CV-B4 in China and worldwide. Phylogenetic analysis showed that CV-B4 originated from a common ancestor in Shandong. CV-B4 strains isolated worldwide could be classified into genotypes A-E based on the sequence of the VP1 region. All CV-B4 strains in China belonged to genotype E. The global population diversity of CV-B4 fluctuated substantially over time, and CV-B4 isolated in China accounted for a significant increase in the diversity of CV-B4. The average nucleotide substitution rate in VP1 of Chinese CV-B4 (5.20 × 10-3 substitutions/site/year) was slightly higher than that of global CV-B4 (4.82 × 10-3 substitutions/site/year). This study is the first to investigate the evolutionary dynamics of CV-B4 and its association with an HFMD outbreak. These findings explain both the 2011 outbreak and the global increase in CV-B4 diversity. In addition to improving our understanding of a major outbreak, these findings provide a basis for the development of surveillance strategies.
Asunto(s)
Proteínas de la Cápside/genética , Enterovirus Humano B/clasificación , Enfermedad de Boca, Mano y Pie/virología , Polimorfismo de Nucleótido Simple , China , Enterovirus Humano B/genética , Enterovirus Humano B/aislamiento & purificación , Evolución Molecular , Humanos , Tipificación Molecular , Tasa de Mutación , Filogenia , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: An outbreak of an imported Type 1 wild poliovirus from Pakistan occurred in the Xinjiang Uygur Autonomous Region of China in 2011, although the local immunity status of the oral polio vaccine (OPV) was relatively satisfied. METHODS: Neutralizing antibody titers against the Xinjiang strain and Sabin 1 strain were measured in 237 sera from 3 groups of fully OPV-vaccinated persons and 1 group of infants fully vaccinated with the inactive polio vaccine (IPV). Additionally, 17 sera collected from 1 Xinjiang poliomyelitis case and his 16 contacts were also tested. Genomic sequencing was conducted the Xinjiang strain. RESULTS: The antibody titers against the Xinjiang strain in each of 237 sera were significantly lower than those against the Sabin 1 strain. Notably, 40.0% of children in Group 1 were seronegative against the Xinjiang strain, which indicated that they might play an important role in wild poliovirus transmission, although their antibody titers against the Sabin 1 strain varied between 1:8 and 1:512. Meanwhile, serological results of the Xinjiang poliomyelitis case and his contacts also provided evidence that a proportion of OPV-vaccinated children had indeed been involved in the transmission chain of the Xinjiang outbreak. Genomic sequencing indicated that the Xinjiang strain was greatly distinguishable from the Sabin 1 strain in neutralizing antigenic sites. CONCLUSION: The lack of neutralizing antibodies against the Xinjiang strain in persons vaccinated by OPV may be associated with the transmission of Type 1 wild poliovirus in Xinjiang. Using Salk IPV along with OPV might be considered in a wild poliovirus outbreak response, especially in the countries which continued to have persistent wild poliovirus circulation.
Asunto(s)
Poliomielitis , Poliovirus , Niño , China/epidemiología , Humanos , Lactante , Pakistán , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Poliovirus/genética , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio OralRESUMEN
BACKGROUND: Enterovirus C96 (EV-C96) is a newly named type of enterovirus belonging to species C, and the prototype strain (BAN00-10488) was firstly isolated in 2000 from a stool specimen of a patient with acute flaccid paralysis in Bangladesh. In this study, we report the genomic and phenotypic characteristics of two EV-C96 strains isolated from individuals from the Tibet Autonomous Region of China. METHODS: Human rhabdomyosarcoma (RD), human laryngeal epidermoid carcinoma (HEp-2), and human cervical cancer (Hela) cells were infected with the Tibet EV-C96 strains, and enterovirus RNA in the cell culture was detected with a real time RT-PCR-based enterovirus screening method. The temperature sensitivity of Tibet EV-C96 strains were assayed on a monolayer of RD cells in 24-well plates. Full-length genome sequencing was performed by a 'primer-walking' strategy, and the evolutionary history of EV-C96 was studied by maximum likelihood analysis. RESULTS: Strain 2005-T49 grew in all three kinds of cells, and it was not temperature sensitive. In contrast, none of the three cells produced CPE for strain 2012-94H. Phylogenetic analysis of the two Tibetan viruses, other EV-C96 strains, and EV-C prototypes showed that EV-C96 strains were grouped into three clusters (Cluster1-3) based on their VP1 sequences, which may represent three genotypes. Phylogenetic trees based on the P2 and P3 regions highlighted the difference between Chinese EV-C96 strains and the EV-C96 prototype strain BAN-10488. All Chinese strains formed a cluster separate from BAN-10488, which clustered with CV-A1/CV-A22/CV-A19. CONCLUSIONS: There is genetic variability between EV-C96 strains which suggest that at least few genetic lineages co-exist and there has been some degree of circulation in different geographical regions for some time. Some recombination events must have occurred during EV-C96 evolution as EV-C96 isolates cluster with different EV-C prototype strains in phylogenetic trees in different genomic regions. However, recombination does not seem to have occurred frequently as EV-C96 isolates from different years and locations appear to cluster together in all genomic regions analysed. These findings expand the understanding of the characterization of EV-C96 and are meaningful for the surveillance of the virus.
Asunto(s)
Enterovirus/clasificación , Genoma Viral , Filogenia , Enterovirus/aislamiento & purificación , Infecciones por Enterovirus/virología , Variación Genética , Genotipo , Humanos , Fenotipo , ARN Viral/genética , Recombinación Genética , Análisis de Secuencia de ADN , Tibet , Secuenciación Completa del GenomaRESUMEN
Coxsackievirus A16 (CV-A16) is one of the main causative agents of hand, foot and mouth disease (HFMD) in young children and has become prevalent in the Asia-Pacific region in recent years. However, no approved vaccines or drugs are available for CV-A16 infection. CV-A16 virus-like particles (VLPs) are a potential vaccine candidate; however, whether the intranasal route of immunization is suitable for inducing immune responses against CV-A16 infection has not been clarified. In this study, the comprehensive immunogenicity and protective efficacy of the CV-A16 VLP vaccine were evaluated by multiple methods in a mouse model. In mice, a high neutralizing antibody (NTAb) titre could be elicited by intranasal immunization with CV-A16 VLPs, which produced NTAb levels similar to those induced by intranasal immunization with inactivated CV-A16. Passive immunity with NTAbs provided very good protection, as the survival rate of the immunized neonatal mice was 100% after challenges with CV-A16 at a dose of 1000 LD50. Passive protective effects were transferred to the neonates via the mother, thus protecting all the pups against challenges with the homologous or heterologous strains of CV-A16 at a dose of 1000 LD50. In addition, intranasal immunization with CV-A16 VLPs also induced the production of mucosal secretory IgA (s-IgA) antibodies, which may inhibit CV-A16 virus invasion. This study provides valuable supplemental information to facilitate our understanding of the specific protective efficacy of CV-A16 VLPs and has significance for development of the candidate vaccine into a safe and effective vaccine.
Asunto(s)
Enterovirus Humano A/inmunología , Infecciones por Enterovirus/prevención & control , Nariz/virología , Vacunas Virales/administración & dosificación , Animales , Animales Recién Nacidos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Femenino , Humanos , Inmunización , Ratones , Ratones Endogámicos ICR , Vacunas Virales/genética , Vacunas Virales/inmunologíaRESUMEN
BACKGROUND: Coxsackievirus B3 (CV-B3) is usually associated with aseptic meningitis and myocarditis; however, the association between CV-B3 and hand, foot, and mouth disease (HFMD) has not been clearly demonstrated, and the phylogenetic dynamics and transmission history of CV-B3 have not been well summarized. METHOD: Two HFMD outbreaks caused by CV-B3 were described in Hebei Province in 2012 and in Shandong Province in 2016 in China. To analyze the epidemiological features of two CV-B3 outbreaks, a retrospective analysis was conducted. All clinical specimens from CV-B3 outbreaks were collected and disposed according to the standard procedures supported by the WHO Global Poliovirus Specialized Laboratory. EV genotyping and phylogenetic analysis were performed to illustrate the genetic characteristics of CV-B3 in China and worldwide. RESULTS: Two transmissible lineages (lineage 2 and 3) were observed in Northern China, which acted as an important "reservoir" for the transmission of CV-B3. Sporadic exporting and importing of cases were observed in almost all regions. In addition, the global sequences of CV-B3 showed a tendency of geographic-specific clustering, indicating that geographic-driven adaptation plays a major role in the diversification and evolution of CV-B3. CONCLUSIONS: Overall, our study indicated that CV-B3 is a causative agent of HFMD outbreak and revealed the phylogenetic dynamics of CV-B3 worldwide, as well as provided an insight on CV-B3 outbreaks for effective intervention and countermeasures.
Asunto(s)
Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidad , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/virología , Evolución Biológica , China/epidemiología , Análisis por Conglomerados , Infecciones por Coxsackievirus/epidemiología , Brotes de Enfermedades , Enterovirus Humano B/fisiología , Humanos , Filogenia , Estudios RetrospectivosRESUMEN
BACKGROUND: The last case of infection with wild-type poliovirus indigenous to China was reported in 1994, and China was certified as a poliomyelitis-free region in 2000. In 2011, an outbreak of infection with imported wild-type poliovirus occurred in the province of Xinjiang. METHODS: We conducted an investigation to guide the response to the outbreak, performed sequence analysis of the poliovirus type 1 capsid protein VP1 to determine the source, and carried out serologic and coverage surveys to assess the risk of viral propagation. Surveillance for acute flaccid paralysis was intensified to enhance case ascertainment. RESULTS: Between July 3 and October 9, 2011, investigators identified 21 cases of infection with wild-type poliovirus and 23 clinically compatible cases in southern Xinjiang. Wild-type poliovirus type 1 was isolated from 14 of 673 contacts of patients with acute flaccid paralysis (2.1%) and from 13 of 491 healthy persons who were not in contact with affected persons (2.6%). Sequence analysis implicated an imported wild-type poliovirus that originated in Pakistan as the cause of the outbreak. A public health emergency was declared in Xinjiang after the outbreak was confirmed. Surveillance for acute flaccid paralysis was enhanced, with daily reporting from all public and private hospitals. Five rounds of vaccination with live, attenuated oral poliovirus vaccine (OPV) were conducted among children and adults, and 43 million doses of OPV were administered. Trivalent OPV was used in three rounds, and monovalent OPV type 1 was used in two rounds. The outbreak was stopped 1.5 months after laboratory confirmation of the index case. CONCLUSIONS: The 2011 outbreak in China showed that poliomyelitis-free countries remain at risk for outbreaks while the poliovirus circulates anywhere in the world. Global eradication of poliomyelitis will benefit all countries, even those that are currently free of poliomyelitis.
Asunto(s)
Brotes de Enfermedades , Poliomielitis/epidemiología , Vacuna Antipolio Oral , Poliovirus/genética , Adolescente , Adulto , Distribución por Edad , Proteínas de la Cápside/genética , Niño , Preescolar , China/epidemiología , Brotes de Enfermedades/prevención & control , Femenino , Humanos , Incidencia , Lactante , Masculino , Filogenia , Poliomielitis/diagnóstico , Poliomielitis/prevención & control , Poliomielitis/transmisión , Poliovirus/aislamiento & purificación , Vacuna Antipolio Oral/administración & dosificación , Vigilancia de la Población , Práctica de Salud Pública , Distribución por SexoRESUMEN
BACKGROUND: Enterovirus A71 (EV-A71) is the main pathogen responsible for large outbreaks of hand, foot, and mouth disease (HFMD) in mainland China, and the dominant EV-A71 strains belong to subgenotype C4. To date, only one imported subgenotype B5 of EV-A71 has been reported in Xiamen City Fujian Province, 2009. RESULTS: Here, we report on another imported subgenotype B5 of EV-A71 isolated from a HFMD patient in Chongqing City in 2014 (strain CQ2014-86/CQ/CHN/2014, hereafter refer as CQ2014-86). The VP1 coding sequence and the whole genome sequence revealed that strain CQ2014-86 shares the high nucleotide identity with Vietnamese strains isolated in 2011-2013, suggesting that strain CQ2014-86 may have been imported from Vietnam. In the 5'UTR, P2 and P3 regions, recombination events were found between strain CQ2014-86 and other EV-A, such as coxsackievirus A4 (CV-A4), CV-A5, CV-A14 and CV-A16. CONCLUSIONS: This is the second report on importation of subgenotype B5 of EV-A71 in China, implying that we need to pay more attention to the importation of different subgenotypes of EV-A71.
Asunto(s)
Enterovirus Humano A/aislamiento & purificación , Enfermedad de Boca, Mano y Pie/virología , China/epidemiología , Brotes de Enfermedades , Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Filogenia , Viaje , VietnamRESUMEN
BACKGROUND: Poliomyelitis has historically been endemic in China and has been considered an important cause of disability and death. METHODS: We reviewed strategies and measures of poliomyelitis control and eradication from 1953 to 2012. Data from notifiable disease and routine immunization reporting systems and acute flaccid paralysis (AFP) surveillance were analyzed. RESULTS: About 20 000 poliomyelitis cases were reported annually in the prevaccine era. During 1965-1977, live, attenuated oral poliomyelitis vaccine (OPV) was administered to children through annual mass campaigns in the winter, and the number of poliomyelitis cases started to decline. A cold chain system was established during 1982, and OPV coverage increased during the early stage of the Expanded Programme on Immunization, from 1978 to 1988. Between 1989 and 1999, routine immunization was strengthened, supplementary immunization activities (SIAs) were conducted, and the AFP surveillance system was established. China reported a last indigenous poliomyelitis case in 1994 and was certified as free of polio in 2000. To maintain its polio-free status, China kept >90% coverage of 3 doses of OPV, conducted SIAs in high-risk areas, and maintained high-quality of AFP surveillance. China succeeded in stopping the outbreak in Xinjiang in 2011. CONCLUSIONS: China's polio-free status was achieved and maintained through strengthening routine immunization and implementing SIAs and AFP surveillance.