Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(3): e2306806, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688339

RESUMEN

The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g-1 at 0.1 C and 885 mAh g-1 at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g-1 is achieved at 1.0 C and maintains at 731 mAh g-1 after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm-2 harvests a practical areal capacity of 5.70 mAh cm-2 at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.

2.
Angew Chem Int Ed Engl ; 63(33): e202407315, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818545

RESUMEN

Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.

3.
Small ; 19(39): e2302249, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226368

RESUMEN

Sluggish sulfur redox reaction (SROR) kinetics accompanying lithium polysulfides (LiPSs) shuttle effect becomes a stumbling block for commercial application of LiS battery. High-efficient single atom catalysts (SACs) are desired to improve the SROR conversion capability; however, the sparse active sites as well as partial sites encapsulated in bulk-phase are fatal to the catalytic performance. Herein, high loading (5.02 wt.%) atomically dispersed manganese sites (MnSA) on hollow nitrogen-doped carbonaceous support (HNC) are realized for the MnSA@HNC SAC by a facile transmetalation synthetic strategy. The thin-walled hollow structure (≈12 nm) anchoring the unique trans-MnN2 O2 sites of MnSA@HNC provides a shuttle buffer zone and catalytic conversion site for LiPSs. Both electrochemical measurement and theoretical calculation indicate that the MnSA@HNC with abundant trans-MnN2 O2 sites have extremely high bidirectional SROR catalytic activity. The assembled LiS battery based on the MnSA@HNC modified separator can deliver a large specific capacity of 1422 mAh g-1 at 0.1 C and stable cycling over 1400 cycles with an ultralow decay rate of 0.033% per cycle at 1 C. More impressively, a flexible pouch cell on account of the MnSA@HNC modified separator may release a high initial specific capacity of 1192 mAh g-1 at 0.1 C and uninterruptedly work after the bending-unbending processes.

4.
Small ; 18(26): e2201996, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35655341

RESUMEN

A universal strategy is established for preparing the carbonaceous matrix-based atomically distributed metal catalysts M-BPC (M=Ni, Co, Fe, Cu, and Mn, and biomass-derived porous carbon (BPC)) by one-step pyrolysis of mixed metal salts and biomass alfalfa. The optimized Ni-BPC has dual-atom Ni(II)2 N4 (µ2 -N)2 moieties, which are chemically anchored on the alfalfa-derived developed porous N-doped carbon BPC matrix. An ultrahigh specific surface area of 3133 m2 g-1 with huge total pore volume of 3.02 cm3 g-1 is obtained for Ni-BPC. The Ni-BPC could greatly promote the redox kinetics and effectively prevent the shuttle effect of lithium polysulfides in a Li-S battery. The Li-S battery assembled with the Ni-BPC modified separator exhibits prominent rate performance with the reversible specific capacities of 1279, 1119, 1037, 948 and 787 mAh g-1 at the current densities of 0.1, 0.2, 0.5, 1 and 2 C, respectively. The battery presents an ultra-long life with low capacity decay of 0.028% per cycle up to 2100 cycles at 1 C. Even under high areal S loadings of 3.9 mg cm-2 , the high discharge capacity of 976.6 mAh g-1 is obtained at 0.2 C and excellent cycling stability with 61.1% capacity retention is achieved after 490 cycles.

5.
Small Methods ; 7(10): e2300519, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37344352

RESUMEN

Despite lithium-sulfur (Li-S) batteries possessing ultrahigh energy density as great promising energy storage devices, the suppressing shuttle effect and improving sulfur redox reaction (SROR) are vital for their practical application. Developing high-activity electrocatalysts for enhancing the SROR kinetics is a major challenge for the application of Li-S batteries. Herein, single-molecule iron phthalocyanine species are anchored on the N and P dual-doped porous carbon nanosheets (Fe-NPPC) via axial Fe-N coordination to optimize the electronic structure of active centers. The Fe-NPPC can promote the catalytic conversion of polysulfides by modulation of the electronic density in active moieties, endowing the Li-S battery with a high reversible capacity of 1023 mAh g-1 at 1 C as well as an ultralow capacity decay of 0.035% per cycle over 1500 cycles. Even with a high sulfur loading of 7.1 mg cm-2 , the Li-S battery delivers a high areal capacity of 4.8 mAh cm-2 after 150 cycles at 0.2 C. With further increasing the sulfur loading to 9.2 mg cm-2 , an excellent areal capacity of up to 9.3 mAh cm-2 is obtained at 0.1 C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA