Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 217(Pt 11): 1955-62, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24675558

RESUMEN

Fish commonly use their lateral line system to detect moving bodies such as prey and predators. A remarkable case is the Mexican blind cavefish Astyanax fasciatus, which evolved the ability to detect non-moving obstacles. The swimming body of A. fasciatus generates fluid disturbances, the alteration of which by an obstacle can be sensed by the fish's lateral line system. It is generally accepted that these alterations can provide information on the distance to the obstacle. We observed that A. fasciatus swimming in an unfamiliar environment open and close their mouths at high frequency (0.7-4.5 Hz) in order to generate suction flows. We hypothesized that repeated mouth suction generates a hydrodynamic velocity field, which is altered by an obstacle, inducing pressure gradients in the neuromasts of the lateral line and corresponding strong lateral line stimuli. We observed that the frequency and rate of mouth-opening events varied with the fish's distance to obstacles, a hallmark of pulse-based navigation mechanisms such as echolocation. We formulated a mathematical model of this hitherto unrecognized mechanism of obstacle detection and parameterized it experimentally. This model suggests that suction flows induce lateral line stimuli that are weakly dependent on the fish's speed, and may be an order of magnitude stronger than the correspondent stimuli induced by the fish's gliding body. We illustrate that A. fasciatus can navigate non-visually using a combination of two deeply ancestral and highly conserved mechanisms of ray-finned fishes: the mechanism of sensing water motion by the lateral line system and the mechanism of generating water motion by mouth suction.


Asunto(s)
Conducta Animal/fisiología , Characidae/fisiología , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/fisiología , Navegación Espacial , Animales , Fenómenos Biomecánicos , Hidrodinámica , Boca/fisiología , Natación
2.
J Exp Biol ; 216(Pt 15): 2789-97, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23619416

RESUMEN

Marine larvae are often considered as drifters that collide with larval collectors as passive particles. The trajectories of Bugula neritina larvae and of polystyrene beads were recorded in the velocity field of a vertical cylinder. The experiments illustrated that the trajectories of larvae and of beads may differ markedly. By considering a larva as a self-propelled mechanical microswimmer, a mathematical model of its motion in the two-dimensional velocity field of a long cylinder was formulated. Simulated larval trajectories were compared with experimental observations. We calculated the ratio η of the probability of contact of a microswimmer with a cylinder to the probability of contact of a passive particle with the cylinder. We found that depending on the ratio S of the swimming velocity of the microswimmer to the velocity of the ambient current, the probability of contact of a microswimmer with a collector may be orders of magnitude larger than the probability of contact of a passive particle with the cylinder: for S≈0.01, η≈1; for S≈0.1, η≈10; and for S≈1, η≈100.


Asunto(s)
Organismos Acuáticos/fisiología , Briozoos/fisiología , Hidrodinámica , Animales , Simulación por Computador , Larva/fisiología , Microesferas , Modelos Biológicos , Movimiento , Poliestirenos/química , Probabilidad , Propiedades de Superficie , Natación/fisiología
3.
MethodsX ; 8: 101529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004194

RESUMEN

Olfactory navigation is defined as a task of a self-propelled navigator with some sensors capabilities to detect odor (or scalar concentration) convected and diffused in a windy environment. Known for their expertise in locating an odor source, male moths feature a bio-inspirational model of olfactory navigation using chemosensory. Many studies have developed moths-inspired algorithms based on proposed strategies of odor-sourcing. However, comparing among various bio-inspired strategies is challenging, due to the lack of a componential framework that allows statistical comparison of their performances, in a controlled environment. This work aims at closing this gap, using an open source, freely accessible simulation framework. To demonstrate the applicability of our simulated framework as a benchmarking tool, we implemented two different moth-inspired navigation strategies; for each strategy, specific modifications in the navigation module were carried out, resulting in four different navigation models. We tested the performance of moth-like navigators of these models through various wind and odor spread parameters in a virtual turbulent environment. The performance of the navigators was comprehensively analyzed using bio-statistical tests. This benchmark-ready simulation framework could be useful for the biology-oriented, as well as engineering-oriented studies, assisting in deducing the evolutionary efficient strategies and improving self-propelled autonomous systems in complex environments.•The open-source framework `Mothpy' provides a computational platform that simulates the behavior of moth-like navigators, using two main inputs to be modified by the user: (1) flow condition; and (2) navigation strategy.•`Mothpy' can be used as a benchmarking platform to compare the performance of multiple moth-like navigators, under various physical environments, and different searching strategies.•Method name: Mothpy 0.0.1' - an open-source moth-inspired navigator simulator.

4.
PLoS One ; 13(6): e0198422, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897978

RESUMEN

Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a "puff crossing time", improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an "internal counter", that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.


Asunto(s)
Mariposas Nocturnas/fisiología , Feromonas/metabolismo , Navegación Espacial/fisiología , Algoritmos , Animales , Simulación por Computador , Femenino , Vuelo Animal/fisiología , Masculino , Modelos Biológicos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA