Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 17 Suppl 2: 444, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27357693

RESUMEN

BACKGROUND: Next generation sequencing (NGS) provides a key technology for deciphering the genetic underpinnings of human diseases. Typical NGS analyses of a patient depict tens of thousands non-reference coding variants, but only one or very few are expected to be significant for the relevant disorder. In a filtering stage, one employs family segregation, rarity in the population, predicted protein impact and evolutionary conservation as a means for shortening the variation list. However, narrowing down further towards culprit disease genes usually entails laborious seeking of gene-phenotype relationships, consulting numerous separate databases. Thus, a major challenge is to transition from the few hundred shortlisted genes to the most viable disease-causing candidates. RESULTS: We describe a novel tool, VarElect ( http://ve.genecards.org ), a comprehensive phenotype-dependent variant/gene prioritizer, based on the widely-used GeneCards, which helps rapidly identify causal mutations with extensive evidence. The GeneCards suite offers an effective and speedy alternative, whereby >120 gene-centric automatically-mined data sources are jointly available for the task. VarElect cashes on this wealth of information, as well as on GeneCards' powerful free-text Boolean search and scoring capabilities, proficiently matching variant-containing genes to submitted disease/symptom keywords. The tool also leverages the rich disease and pathway information of MalaCards, the human disease database, and PathCards, the unified pathway (SuperPaths) database, both within the GeneCards Suite. The VarElect algorithm infers direct as well as indirect links between genes and phenotypes, the latter benefitting from GeneCards' diverse gene-to-gene data links in GenesLikeMe. Finally, our tool offers an extensive gene-phenotype evidence portrayal ("MiniCards") and hyperlinks to the parent databases. CONCLUSIONS: We demonstrate that VarElect compares favorably with several often-used NGS phenotyping tools, thus providing a robust facility for ranking genes, pointing out their likelihood to be related to a patient's disease. VarElect's capacity to automatically process numerous NGS cases, either in stand-alone format or in VCF-analyzer mode (TGex and VarAnnot), is indispensable for emerging clinical projects that involve thousands of whole exome/genome NGS analyses.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Algoritmos , Minería de Datos , Bases de Datos Genéticas , Genoma Humano , Humanos , Fenotipo
2.
Bioinformatics ; 29(2): 255-61, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23172862

RESUMEN

MOTIVATION: Non-coding RNA (ncRNA) genes are increasingly acknowledged for their importance in the human genome. However, there is no comprehensive non-redundant database for all such human genes. RESULTS: We leveraged the effective platform of GeneCards, the human gene compendium, together with the power of fRNAdb and additional primary sources, to judiciously unify all ncRNA gene entries obtainable from 15 different primary sources. Overlapping entries were clustered to unified locations based on an algorithm employing genomic coordinates. This allowed GeneCards' gamut of relevant entries to rise ∼5-fold, resulting in ∼80,000 human non-redundant ncRNAs, belonging to 14 classes. Such 'grand unification' within a regularly updated data structure will assist future ncRNA research. AVAILABILITY AND IMPLEMENTATION: All of these non-coding RNAs are included among the ∼122,500 entries in GeneCards V3.09, along with pertinent annotation, automatically mined by its built-in pipeline from 100 data sources. This information is available at www.genecards.org. CONTACT: Frida.Belinky@weizmann.ac.il SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos Genéticas , ARN no Traducido/genética , Algoritmos , Análisis por Conglomerados , Genes , Genoma Humano , Genómica , Humanos , Internet , Anotación de Secuencia Molecular
3.
Artículo en Inglés | MEDLINE | ID: mdl-27048349

RESUMEN

GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/.


Asunto(s)
Minería de Datos , Bases de Datos de Proteínas , Genes , Proteómica/métodos , Análisis por Conglomerados , Humanos , Análisis de Componente Principal , Proteoma/metabolismo , ARN/metabolismo
4.
Curr Protoc Bioinformatics ; 54: 1.30.1-1.30.33, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27322403

RESUMEN

GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Genéticas , Genómica/métodos , Análisis de Secuencia/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Proteoma , Programas Informáticos/normas
5.
Artículo en Inglés | MEDLINE | ID: mdl-25725062

RESUMEN

The study of biological pathways is key to a large number of systems analyses. However, many relevant tools consider a limited number of pathway sources, missing out on many genes and gene-to-gene connections. Simply pooling several pathways sources would result in redundancy and the lack of systematic pathway interrelations. To address this, we exercised a combination of hierarchical clustering and nearest neighbor graph representation, with judiciously selected cutoff values, thereby consolidating 3215 human pathways from 12 sources into a set of 1073 SuperPaths. Our unification algorithm finds a balance between reducing redundancy and optimizing the level of pathway-related informativeness for individual genes. We show a substantial enhancement of the SuperPaths' capacity to infer gene-to-gene relationships when compared with individual pathway sources, separately or taken together. Further, we demonstrate that the chosen 12 sources entail nearly exhaustive gene coverage. The computed SuperPaths are presented in a new online database, PathCards, showing each SuperPath, its constituent network of pathways, and its contained genes. This provides researchers with a rich, searchable systems analysis resource. Database URL: http://pathcards.genecards.org/


Asunto(s)
Vías Biosintéticas/fisiología , Bases de Datos Genéticas , Epistasis Genética/fisiología , Redes Reguladoras de Genes/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA