Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375686

RESUMEN

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Asunto(s)
Ecosistema , Pradera , Plantas , Clima , Procesos Climáticos , Biodiversidad
2.
Science ; 383(6683): 653-658, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330102

RESUMEN

Madagascar exhibits high endemic biodiversity that has evolved with sustained and stable rates of speciation over the past several tens of millions of years. The topography of Madagascar is dominated by a mountainous continental rift escarpment, with the highest plant diversity and rarity found along the steep, eastern side of this geographic feature. Using a process-explicit model, we show that precipitation-driven erosion and landward retreat of this high-relief topography creates transient habitat organization through multiple mechanisms, including catchment expansion, isolation of highland remnants, and formation of topographic barriers. Habitat isolation and reconnection on a million-year timescale serves as an allopatric speciation pump creating the observed biodiversity.


Asunto(s)
Biodiversidad , Especiación Genética , Plantas , Madagascar , Filogenia , Plantas/clasificación
3.
Ecol Evol ; 14(3): e11140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38495434

RESUMEN

The Arctic ecosystems and their species are exposed to amplified climate warming and, in some regions, to rapidly developing economic activities. This study assesses, models, and maps the geographic patterns of community-level plant species richness in the Western Siberian Arctic and estimates the relative impact of environmental and anthropogenic factors driving these patterns. With our study, we aim at contributing toward conservation efforts for Arctic plant diversity in the Western Siberian Arctic. Western Siberian Arctic, Russia. We investigated the relative importance of environmental and anthropogenic predictors of community-level plant species richness in the Western Siberian Arctic using macroecological models trained with an extensive geobotanical dataset. We included vascular plants, mosses and lichens in our analysis, as non-vascular plants substantially contribute to species richness and ecosystem functions in the Arctic. We found that the mean community-level plant species richness in this vast Arctic region does not decrease with increasing latitude. Instead, we identified an increase in species richness from South-West to North-East, which can be well explained by environmental factors. We found that paleoclimatic factors exhibit higher explained deviance compared to contemporary climate predictors, potentially indicating a lasting impact of ancient climate on tundra plant species richness. We also show that the existing protected areas cover only a small fraction of the regions with highest species richness. Our results reveal complex spatial patterns of community-level species richness in the Western Siberian Arctic. We show that climatic factors such as temperature (including paleotemperature) and precipitation are the main drivers of plant species richness in this area, and the role of relief is clearly secondary. We suggest that while community-level plant species richness is mostly driven by environmental factors, an improved spatial sampling will be needed to robustly and more precisely assess the impact of human activities on community-level species richness patterns. Our approach and results can be used to design conservation strategies and to investigate drivers of plant species richness in other arctic regions.

4.
Nat Ecol Evol ; 8(3): 454-466, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253754

RESUMEN

To meet the COP15 biodiversity framework in the European Union (EU), one target is to protect 30% of its land by 2030 through a resilient transnational conservation network. The European Alps are a key hub of this network hosting some of the most extensive natural areas and biodiversity hotspots in Europe. Here we assess the robustness of the current European reserve network to safeguard the European Alps' flora by 2080 using semi-mechanistic simulations. We first highlight that the current network needs strong readjustments as it does not capture biodiversity patterns as well as our conservation simulations. Overall, we predict a strong shift in conservation need through time along latitudes, and from lower to higher elevations as plants migrate upslope and shrink their distribution. While increasing species, trait and evolutionary diversity, migration could also threaten 70% of the resident flora. In the face of global changes, the future European reserve network will need to ensure strong elevation and latitudinal connections to complementarily protect multifaceted biodiversity beyond national borders.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Europa (Continente) , Plantas , Unión Europea
5.
Nat Commun ; 15(1): 4421, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789424

RESUMEN

In the age of big data, scientific progress is fundamentally limited by our capacity to extract critical information. Here, we map fine-grained spatiotemporal distributions for thousands of species, using deep neural networks (DNNs) and ubiquitous citizen science data. Based on 6.7 M observations, we jointly model the distributions of 2477 plant species and species aggregates across Switzerland with an ensemble of DNNs built with different cost functions. We find that, compared to commonly-used approaches, multispecies DNNs predict species distributions and especially community composition more accurately. Moreover, their design allows investigation of understudied aspects of ecology. Including seasonal variations of observation probability explicitly allows approximating flowering phenology; reweighting predictions to mirror cover-abundance allows mapping potentially canopy-dominant tree species nationwide; and projecting DNNs into the future allows assessing how distributions, phenology, and dominance may change. Given their skill and their versatility, multispecies DNNs can refine our understanding of the distribution of plants and well-sampled taxa in general.


Asunto(s)
Ciencia Ciudadana , Aprendizaje Profundo , Plantas , Suiza , Ecosistema , Biodiversidad , Estaciones del Año , Modelos Biológicos
6.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217639

RESUMEN

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Asunto(s)
Magnoliopsida , Filogenia , Biodiversidad , Plantas , Ecosistema , Conservación de los Recursos Naturales
7.
Nat Commun ; 15(1): 4375, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821947

RESUMEN

The conservation and restoration of forest ecosystems require detailed knowledge of the native plant compositions. Here, we map global forest tree composition and assess the impacts of historical forest cover loss and climate change on trees. The global occupancy of 10,590 tree species reveals complex taxonomic and phylogenetic gradients determining a local signature of tree lineage assembly. Species occupancy analyses indicate that historical forest loss has significantly restricted the potential suitable range of tree species in all forest biomes. Nevertheless, tropical moist and boreal forest biomes display the lowest level of range restriction and harbor extremely large ranged tree species, albeit with a stark contrast in richness and composition. Climate change simulations indicate that forest biomes are projected to differ in their response to climate change, with the highest predicted species loss in tropical dry and Mediterranean ecoregions. Our findings highlight the need for preserving the remaining large forest biomes while regenerating degraded forests in a way that provides resilience against climate change.


Asunto(s)
Biodiversidad , Cambio Climático , Bosques , Filogenia , Árboles , Conservación de los Recursos Naturales , Ecosistema , Especificidad de la Especie
8.
Sci Data ; 11(1): 21, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172116

RESUMEN

Standard and easily accessible cross-thematic spatial databases are key resources in ecological research. In Switzerland, as in many other countries, available data are scattered across computer servers of research institutions and are rarely provided in standard formats (e.g., different extents or projections systems, inconsistent naming conventions). Consequently, their joint use can require heavy data management and geomatic operations. Here, we introduce SWECO25, a Swiss-wide raster database at 25-meter resolution gathering 5,265 layers. The 10 environmental categories included in SWECO25 are: geologic, topographic, bioclimatic, hydrologic, edaphic, land use and cover, population, transportation, vegetation, and remote sensing. SWECO25 layers were standardized to a common grid sharing the same resolution, extent, and geographic coordinate system. SWECO25 includes the standardized source data and newly calculated layers, such as those obtained by computing focal or distance statistics. SWECO25 layers were validated by a data integrity check, and we verified that the standardization procedure had a negligible effect on the output values. SWECO25 is available on Zenodo and is intended to be updated and extended regularly.

9.
Nat Commun ; 15(1): 1921, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429327

RESUMEN

Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Tamaño Corporal , Clima , Agua Dulce
10.
Nat Commun ; 15(1): 4658, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821957

RESUMEN

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.


Asunto(s)
Biodiversidad , Bosques , Hojas de la Planta , Árboles , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Ecosistema , Suelo/química , Clima
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA