Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 177(6): 1436-1447.e12, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150620

RESUMEN

Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to "remember" time in the absence of external cues.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Conducta Alimentaria/fisiología , Femenino , Homeostasis , Luz , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Especificidad de Órganos/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
2.
Cell ; 177(6): 1448-1462.e14, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150621

RESUMEN

Mammals rely on a network of circadian clocks to control daily systemic metabolism and physiology. The central pacemaker in the suprachiasmatic nucleus (SCN) is considered hierarchically dominant over peripheral clocks, whose degree of independence, or tissue-level autonomy, has never been ascertained in vivo. Using arrhythmic Bmal1-null mice, we generated animals with reconstituted circadian expression of BMAL1 exclusively in the liver (Liver-RE). High-throughput transcriptomics and metabolomics show that the liver has independent circadian functions specific for metabolic processes such as the NAD+ salvage pathway and glycogen turnover. However, although BMAL1 occupies chromatin at most genomic targets in Liver-RE mice, circadian expression is restricted to ∼10% of normally rhythmic transcripts. Finally, rhythmic clock gene expression is lost in Liver-RE mice under constant darkness. Hence, full circadian function in the liver depends on signals emanating from other clocks, and light contributes to tissue-autonomous clock function.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Hígado/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Luz , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Especificidad de Órganos/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
4.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793502

RESUMEN

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Cromatografía Liquida , Relojes Circadianos/genética , Ritmo Circadiano/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem
5.
BMC Cancer ; 20(1): 703, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727400

RESUMEN

BACKGROUND: Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS: Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 µM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS: The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION: Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Atorvastatina/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/genética , Interleucina-8/efectos de los fármacos , Interleucina-8/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatos de Poliisoprenilo/farmacología , Prenilación/efectos de los fármacos , Rosuvastatina Cálcica/farmacología , Sesquiterpenos/farmacología , Simvastatina/farmacología , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética , Ácido Zoledrónico/farmacología
6.
Science ; 384(6695): 563-572, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696572

RESUMEN

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento , Encéfalo , Ritmo Circadiano , Músculo Esquelético , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/prevención & control , Encéfalo/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Homeostasis , Músculo Esquelético/fisiología , Ratones Noqueados , Factores de Transcripción ARNTL/genética
7.
Cell Stem Cell ; 31(6): 834-849.e4, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38701785

RESUMEN

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.


Asunto(s)
Encéfalo , Relojes Circadianos , Epidermis , Homeostasis , Animales , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Epidermis/metabolismo , Epidermis/fisiología , Ratones , Encéfalo/fisiología , Encéfalo/metabolismo , Transducción de Señal , Piel/metabolismo , Ratones Endogámicos C57BL , Ritmo Circadiano/fisiología
8.
Methods Mol Biol ; 2482: 243-253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35610431

RESUMEN

Epidermal and interfollicular stem cell proliferation and differentiation are controlled in a circadian manner, in order to anticipate the daily environmental challenges. For this reason, examining the circadian transcriptome of interfollicular stem cells has become a central technique for functional skin studies. In this chapter, we describe a widely adopted protocol for the isolation and analysis of circadian rhythms in adult stem cells of the epidermis.


Asunto(s)
Ritmo Circadiano , Células Epidérmicas , Adulto , Diferenciación Celular , Células Cultivadas , Epidermis , Humanos , Células Madre
9.
Sci Adv ; 8(26): eabo2896, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35767612

RESUMEN

Life on Earth anticipates recurring 24-hour environmental cycles via genetically encoded molecular clocks active in all mammalian organs. Communication between these clocks controls circadian homeostasis. Intertissue communication is mediated, in part, by temporal coordination of metabolism. Here, we characterize the extent to which clocks in different organs control systemic metabolic rhythms, an area that remains largely unexplored. We analyzed the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. Having functional hepatic and muscle clocks can only drive a minority (13%) of systemic metabolic rhythms. Conversely, limiting Bmal1 expression to the central pacemaker in the brain restores rhythms to 57% of circulatory metabolites. Rhythmic feeding imposed on clockless mice resulted in a similar rescue, indicating that the central clock mainly regulates metabolic rhythms via behavior. These findings explicate the circadian communication between tissues and highlight the importance of the central clock in governing those signals.

10.
Sci Adv ; 7(39): eabi7828, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34550736

RESUMEN

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

11.
Sci Rep ; 7(1): 2549, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566689

RESUMEN

The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and ß3 (CD61) were found to be induced. Signaling focal contacts via ITGß3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.


Asunto(s)
Células de la Médula Ósea/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Integrina beta3/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/genética , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Células de la Médula Ósea/citología , Adhesión Celular , Comunicación Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Microambiente Celular , Matriz Extracelular/ultraestructura , Adhesiones Focales/ultraestructura , Regulación de la Expresión Génica , Humanos , Integrina alfaV/genética , Integrina alfaV/metabolismo , Integrina beta3/genética , Células Madre Mesenquimatosas/citología , Glicoproteína IIb de Membrana Plaquetaria/genética , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Andamios del Tejido
12.
Cancer Lett ; 375(1): 162-171, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26968247

RESUMEN

Amino-bisphosphonates are antiresorptive drugs for the treatment of osteolytic bone metastases, which are frequently caused by breast and other solid tumors. Like statins, amino-bisphosphonates inhibit the mevalonate pathway. Direct anti-tumor effects of amino-bisphosphonates and statins have been proposed, although high concentrations are required to achieve these effects. Here, we demonstrate that the treatment of different human breast cancer cell lines (MDA-MB-231, MDA-Bone, and MDA-Met) by combined inhibition of the mevalonate pathway using statins and zoledronic acid at the same time significantly reduces the concentrations required to achieve a meaningful anti-tumor effect over a single agent approach (50% reduction of cell vitality and 4-fold increase of apoptosis; p < 0.05). The effects were mediated by suppressed protein geranylation that caused an accumulation of GTP-bound RhoA and CDC42. Importantly, the knockdown of both proteins prior to mevalonate pathway inhibition reduced apoptosis by up to 65% (p < 0.01), indicating the accumulation of the GTP-bound GTPases as the mediator of apoptosis. Our results point to effective anti-tumor effects in breast cancer by the combination of statins and zoledronic acid and warrant further validation in preclinical settings.


Asunto(s)
Antineoplásicos/farmacología , Atorvastatina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Difosfonatos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Imidazoles/farmacología , Apoptosis , Vías Biosintéticas/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Sinergismo Farmacológico , Activación Enzimática , Femenino , Humanos , Ácido Mevalónico/metabolismo , Ácido Zoledrónico , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA