Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 8081, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808296

RESUMEN

Marine ecosystems are difficult to sample quantitatively at increasing depth. Hence, few studies attempt to measure patterns of beta diversity for ecological communities in the deep sea. Here we (i) present and quantify large-scale gradients in fish community structure along depth and latitude gradients of the New Zealand EEZ, (ii) obtain rigorous quantitative estimates of these depth (50-1200 m) and latitudinal effects (29.15-50.91°S) and their interaction, and (iii) explicitly model how latitudinal beta diversity of fishes varies with depth. The sampling design was highly structured, replicated and stratified for latitude and depth, using data obtained from 345 standardised baited remote underwater stereo-video deployments. Results showed that gradients in fish community structure along depth and latitude were strong and interactive in New Zealand waters; latitudinal variation in fish communities progressively decreased with depth following an exponential decay (r 2 = 0.96), revealing increasingly similar fish communities with increasing depth. In contrast, variation in fish community structure along the depth gradient was of a similar magnitude across all of the latitudes investigated here. We conclude that an exponential decay in beta diversity vs depth exists for fish communities present in areas shallower than the New Zealand upper continental slope.


Asunto(s)
Biota/fisiología , Peces/fisiología , Animales , Biodiversidad , Ecosistema , Geografía/métodos , Nueva Zelanda
2.
PLoS One ; 7(10): e48522, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119045

RESUMEN

BACKGROUND: Continental slopes are among the steepest environmental gradients on earth. However, they still lack finer quantification and characterisation of their faunal diversity patterns for many parts of the world. METHODOLOGY/PRINCIPAL FINDINGS: Changes in fish community structure and diversity along a depth gradient from 50 to 1200 m were studied from replicated stereo baited remote underwater video deployments within each of seven depth zones at three locations in north-eastern New Zealand. Strong, but gradual turnover in the identities of species and community structure was observed with increasing depth. Species richness peaked in shallow depths, followed by a decrease beyond 100 m to a stable average value from 700 to 1200 m. Evenness increased to 700 m depth, followed by a decrease to 1200 m. Average taxonomic distinctness △(+) response was unimodal with a peak at 300 m. The variation in taxonomic distinctness Λ(+) first decreased sharply from 50 to 300 m, then increased beyond 500 m depth, indicating that species from deep samples belonged to more distant taxonomic groups than those from shallow samples. Fishes with northern distributions progressively decreased in their proportional representation with depth whereas those with widespread distributions increased. CONCLUSIONS/SIGNIFICANCE: This study provides the first characterization of diversity patterns for bait-attracted fish species on continental slopes in New Zealand and is an imperative primary step towards development of explanatory and predictive ecological models, as well as being fundamental for the implementation of efficient management and conservation strategies for fishery resources.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Islas , Nueva Zelanda , Dinámica Poblacional
3.
Sci Rep ; 1: 131, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355648

RESUMEN

Hagfishes (Myxinidae), a family of jawless marine pre-vertebrates, hold a unique evolutionary position, sharing a joint ancestor with the entire vertebrate lineage. They are thought to fulfil primarily the ecological niche of scavengers in the deep ocean. However, we present new footage from baited video cameras that captured images of hagfishes actively preying on other fish. Video images also revealed that hagfishes are able to choke their would-be predators with gill-clogging slime. This is the first time that predatory behaviour has been witnessed in this family, and also demonstrates the instantaneous effectiveness of hagfish slime to deter fish predators. These observations suggest that the functional adaptations and ecological role of hagfishes, past and present, might be far more diverse than previously assumed. We propose that the enduring success of this oldest extant family of fishes over 300 million years could largely be due to their unique combination of functional traits.


Asunto(s)
Anguila Babosa/fisiología , Conducta Predatoria/fisiología , Animales , Evolución Biológica , Ecosistema , Peces/fisiología , Branquias/fisiología , Anguila Babosa/anatomía & histología , Modelos Biológicos , Myxococcales/fisiología , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA