Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
2.
Plant J ; 118(5): 1635-1651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38498624

RESUMEN

The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Transferasas Intramoleculares , Azufre , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Azufre/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteómica , Transcriptoma , Multiómica
3.
J Proteome Res ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016325

RESUMEN

Ion mobility mass spectrometry has become popular in proteomics lately, in particular because the Bruker timsTOF instruments have found significant adoption in proteomics facilities. The Bruker's implementation of the ion mobility dimension generates massive amounts of mass spectrometric data that require carefully designed software both to extract meaningful information and to perform processing tasks at reasonable speed. In a historical move, the Bruker company decided to harness the skills of the scientific software development community by releasing to the public the timsTOF data file format specification. As a proteomics facility that has been developing Free Open Source Software (FOSS) solutions since decades, we took advantage of this opportunity to implement the very first FOSS proteomics complete solution to natively read the timsTOF data, low-level process them, and explore them in an integrated quantitative proteomics software environment. We dubbed our software i2MassChroQ because it implements a (peptide)identification-(protein)inference-mass-chromatogram-quantification processing workflow. The software benchmarking results reported in this paper show that i2MassChroQ performed better than competing software on two critical characteristics: (1) feature extraction capability and (2) protein quantitative dynamic range. Altogether, i2MassChroQ yielded better quantified protein numbers, both in a technical replicate MS runs setting and in a differential protein abundance analysis setting.

4.
Genome Res ; 30(11): 1593-1604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060172

RESUMEN

The effect of drought on maize yield is of particular concern in the context of climate change and human population growth. However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult task that would greatly benefit from a better understanding of the genotype-phenotype relationship. To provide novel insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic, and genomic data acquired from 254 maize hybrids grown under two watering conditions. Using association genetics and protein coexpression analysis, we detected more than 22,000 pQTLs across the two conditions and confidently identified 15 loci with potential pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound remodeling of the proteome, which affected the structure of the protein coexpression network, and a reprogramming of the genetic control of the abundance of many proteins, including those involved in stress response. Colocalizations between pQTLs and QTLs for ecophysiological traits, found mostly in the water deficit condition, indicated that this reprogramming may also affect the phenotypic level. Finally, we identified several candidate genes that are potentially responsible for both the coexpression of stress response proteins and the variations of ecophysiological traits under water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of drought tolerance and suggest some pathways for further research and breeding.


Asunto(s)
Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Proteoma/genética , Zea mays/genética , Sequías , Ambiente , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sitios de Carácter Cuantitativo , Zea mays/metabolismo
5.
Plant J ; 107(5): 1478-1489, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174129

RESUMEN

Phosphoglycerate mutases (PGAMs) catalyse the reversible isomerisation of 3-phosphoglycerate and 2-phosphoglycerate, a step of glycolysis. PGAMs can be sub-divided into 2,3-bisphosphoglycerate-dependent (dPGAM) and -independent (iPGAM) enzymes. In plants, phosphoglycerate isomerisation is carried out by cytosolic iPGAM. Despite its crucial role in catabolism, little is known about post-translational modifications of plant iPGAM. In Arabidopsis thaliana, phosphoproteomics analyses have previously identified an iPGAM phosphopeptide where serine 82 is phosphorylated. Here, we show that this phosphopeptide is less abundant in dark-adapted compared to illuminated Arabidopsis leaves. In silico comparison of iPGAM protein sequences and 3D structural modelling of AtiPGAM2 based on non-plant iPGAM enzymes suggest a role for phosphorylated serine in the catalytic reaction mechanism. This is confirmed by the activity (or the lack thereof) of mutated recombinant Arabidopsis iPGAM2 forms, affected in different steps of the reaction mechanism. We thus propose that the occurrence of the S82-phosphopeptide reflects iPGAM2 steady-state catalysis. Based on this assumption, the metabolic consequences of a higher iPGAM activity in illuminated versus darkened leaves are discussed.


Asunto(s)
Arabidopsis/enzimología , Fosfoglicerato Mutasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Glicéricos/metabolismo , Glucólisis , Modelos Estructurales , Fosfoglicerato Mutasa/genética , Fosforilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas Recombinantes , Serina/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012613

RESUMEN

In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 µL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Latencia en las Plantas , Proteolisis , Proteoma/metabolismo , Proteómica , Semillas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806063

RESUMEN

Seed germination is critical for early plantlet development and is tightly controlled by environmental factors. Nevertheless, the signaling networks underlying germination control remain elusive. In this study, the remodeling of Arabidopsis seed phosphoproteome during imbibition was investigated using stable isotope dimethyl labeling and nanoLC-MS/MS analysis. Freshly harvested seeds were imbibed under dark or constant light to restrict or promote germination, respectively. For each light regime, phosphoproteins were extracted and identified from dry and imbibed (6 h, 16 h, and 24 h) seeds. A large repertoire of 10,244 phosphopeptides from 2546 phosphoproteins, including 110 protein kinases and key regulators of seed germination such as Delay Of Germination 1 (DOG1), was established. Most phosphoproteins were only identified in dry seeds. Early imbibition led to a similar massive downregulation in dormant and non-dormant seeds. After 24 h, 411 phosphoproteins were specifically identified in non-dormant seeds. Gene ontology analyses revealed their involvement in RNA and protein metabolism, transport, and signaling. In addition, 489 phosphopeptides were quantified, and 234 exhibited up or downregulation during imbibition. Interaction networks and motif analyses revealed their association with potential signaling modules involved in germination control. Our study provides evidence of a major role of phosphosignaling in the regulation of Arabidopsis seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Fosfopéptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Latencia en las Plantas/genética , Semillas/genética , Espectrometría de Masas en Tándem
8.
Fungal Genet Biol ; 147: 103517, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434644

RESUMEN

For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/metabolismo , Fosfatos/metabolismo , Proteoma , Suelo/química , Proteínas Fúngicas/genética , Nitrógeno/metabolismo , Fosfatos/análisis , Raíces de Plantas/microbiología , Proteómica , Simbiosis/genética , Simbiosis/fisiología
9.
Plant Cell Environ ; 44(5): 1565-1579, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33527435

RESUMEN

Potassium (K) deficiency is a rather common situation that impacts negatively on biomass, photosynthesis and N assimilation, making K fertilization often unavoidable. Effects of K deficiency have been investigated for several decades and recently progress has been made in identifying metabolomics signatures thereby offering potential to monitor the K status of crops in the field. However, effects of low K conditions could also be due to the antagonism with other nutrients like calcium (Ca) and the well-known biomarker of K deficiency, putrescine, could be a response to Ca/K imbalance rather than K deficiency per se. To sort this out, we carried out experiments in sunflower grown at either low or high K, at high or low Ca, with or without putrescine added to the nutrient solution. Using metabolomics and proteomics analysis, we show that a significant part of the low K response, such as lower photosynthesis and N assimilation, is due to calcium and can be suppressed by low Ca conditions. Putrescine addition tends to restore photosynthesis and N assimilation but unlike low Ca does not suppress but aggravates the impact of low K conditions on catabolism, including the typical fall-over in pyruvate kinase. We conclude that (a) the effects of K deficiency on key metabolic processes can be partly alleviated by the use of low Ca and not only by K fertilization and (b) in addition to its role as a metabolite, putrescine participates in acclimation to low K via the regulation of the content in enzymes involved in carbon primary metabolism.


Asunto(s)
Calcio/metabolismo , Helianthus/metabolismo , Potasio/metabolismo , Putrescina/metabolismo , Biomarcadores/metabolismo , Helianthus/fisiología , Metabolómica , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Proteoma/metabolismo
10.
Plant Cell Environ ; 44(5): 1504-1521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410508

RESUMEN

In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.


Asunto(s)
Arabidopsis/metabolismo , Respuesta al Choque por Frío/fisiología , Metaboloma , Proteoma/metabolismo , Zea mays/metabolismo , Zea mays/fisiología , Frío , Genotipo , Fenotipo , Fotosíntesis , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Zea mays/genética
11.
J Exp Bot ; 72(7): 2611-2626, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33558872

RESUMEN

Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.


Asunto(s)
Pisum sativum , Proteómica , Antioxidantes , Deshidratación , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Azufre/metabolismo
12.
Plant Physiol ; 180(3): 1709-1724, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015299

RESUMEN

Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato (Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to estimate translation (kt ) and degradation (kd ) rate constants for almost 2,400 detected transcript-protein pairs and was satisfactorily fitted for >1,000 pairs. The model predicted median values of ∼2 min for the translation of a protein, and a protein lifetime of ∼11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that protein concentration is more strongly affected by the rate of translation than that of degradation.


Asunto(s)
Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Algoritmos , Análisis por Conglomerados , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Modelos Teóricos , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , Proteolisis , Proteómica/métodos
13.
J Exp Bot ; 71(20): 6471-6490, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687580

RESUMEN

Plants have fundamental dependences on nitrogen and sulfur and frequently have to cope with chronic limitations when their supply is sub-optimal. This study aimed at characterizing the metabolomic, proteomic, and transcriptomic changes occurring in Arabidopsis leaves under chronic nitrate (Low-N) and chronic sulfate (Low-S) limitations in order to compare their effects, determine interconnections, and examine strategies of adaptation. Metabolite profiling globally revealed opposite effects of Low-S and Low-N on carbohydrate and amino acid accumulations, whilst proteomic data showed that both treatments resulted in increases in catabolic processes, stimulation of mitochondrial and cytosolic metabolism, and decreases in chloroplast metabolism. Lower abundances of ribosomal proteins and translation factors under Low-N and Low-S corresponded with growth limitation. At the transcript level, the major and specific effect of Low-N was the enhancement of expression of defence and immunity genes. The main effect of chronic Low-S was a decrease in transcripts of genes involved in cell division, DNA replication, and cytoskeleton, and an increase in the expression of autophagy genes. This was consistent with a role of target-of-rapamycin kinase in the control of plant metabolism and cell growth and division under chronic Low-S. In addition, Low-S decreased the expression of several NLP transcription factors, which are master actors in nitrate sensing. Finally, both the transcriptome and proteome data indicated that Low-S repressed glucosinolate synthesis, and that Low-N exacerbated glucosinolate degradation. This showed the importance of glucosinolate as buffering molecules for N and S management.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Proteómica , Sulfatos/metabolismo
14.
New Phytol ; 223(1): 310-322, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30767245

RESUMEN

Oil palm is by far the major oil-producing crop on the global scale, with c. 62 Mt oil produced each year. This species is a strong potassium (K)-demanding species cultivated in regions where soil K availability is generally low and waterlogging due to tropical heavy rains can limit further nutrient absorption. However, the metabolic effects of K and waterlogging have never been assessed precisely. Here, we examined the metabolic response of oil palm saplings in the glasshouse under controlled conditions (nutrient composition with low or high K availability, with or without waterlogging), using gas exchange, metabolomics and proteomics analyses. Our results showed that both low K and waterlogging have a detrimental effect on photosynthesis but stimulate leaf respiration, with differential accumulation of typical metabolic intermediates and enzymes of Krebs cycle and alternative catabolic pathways. In addition, we found a strong relationship between metabolic composition, the rate of leaf dark respiration, and cumulated respiratory loss. Advert environmental conditions (here, low K and waterlogging) therefore have an enormous effect on respiration in oil palm. Leaf metabolome and proteome appear to be good predictors of carbon balance, and open avenues for cultivation biomonitoring using functional genomics technologies.


Asunto(s)
Arecaceae/metabolismo , Carbono/metabolismo , Potasio/farmacología , Agua , Arecaceae/efectos de los fármacos , Biomasa , Respiración de la Célula/efectos de los fármacos , Oscuridad , Metaboloma/efectos de los fármacos , Metabolómica , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
15.
New Phytol ; 223(3): 1461-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077612

RESUMEN

Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and ß-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for ß-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia , Retículo Endoplásmico/metabolismo , Lipidómica , Mutación/genética , Peroxisomas/metabolismo , Proteómica , Proteínas de Arabidopsis/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Modelos Biológicos , Ácido Salicílico/metabolismo
16.
Plant J ; 91(5): 894-910, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28628250

RESUMEN

Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/ß-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition.


Asunto(s)
Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Azufre/metabolismo , Triticum/metabolismo , Diploidia , Grano Comestible/metabolismo , Gliadina
17.
New Phytol ; 219(1): 310-323, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29668080

RESUMEN

Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.


Asunto(s)
Etilenos/metabolismo , Medicago truncatula/microbiología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Sinorhizobium/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Etilenos/farmacología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis/efectos de los fármacos , Simbiosis/fisiología
18.
J Exp Bot ; 69(6): 1369-1385, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29281085

RESUMEN

Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.


Asunto(s)
Arabidopsis/fisiología , Autofagia/genética , Proteasas de Cisteína/genética , Arabidopsis/genética , Proteasas de Cisteína/metabolismo , Mutación , Papaína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
19.
J Chem Ecol ; 44(11): 1030-1039, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30084041

RESUMEN

Foraging parasitoids use chemical signals in host recognition and selection processes. Although, the volatiles play a relevant role in the localization by parasitoids of their hosts feeding on plants, the host identification process for acceptance occurs mainly during contact between the parasitoid and its host where host products related to feeding activities, fecal pellets and oral secretions, play a crucial role. The purpose of this study was to identify the nature of the contact kairomone(s) that mediate the acceptance for oviposition of the parasitoid Cotesia flavipes Cameron (Hymenoptera, Braconidae), which was released in Kenya in 1993 to control the invasive crambid Chilo partellus (Swinhoe). Using host and non-hosts of C. flavipes, we showed that it is mainly the oral secretions of the larvae that harbour the active compound(s) that mediate host acceptance for oviposition by C. flavipes. Using an integration of behavioral observations and biochemical approaches, the active compound of the oral secretions was identified as an α-amylase. Using synthetized α-amylases from Drosophila melanogaster (an insect model for which syntheses of active and inactive α-amylases are available), we observed that the conformation of the enzyme rather than its catalytic site as well as its substrate and its degradation product is responsible for host acceptance and oviposition mediation of C. flavipes females. The results suggest that the α-amylase from oral secretions of the caterpillar host is a good candidate for an evolutionary solution to host acceptance for oviposition in C. flavipes.


Asunto(s)
Avispas/fisiología , Zea mays/parasitología , alfa-Amilasas/metabolismo , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/fisiología , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Parásitos , Proteínas de Insectos/análisis , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/fisiología , Oviposición , Espectrometría de Masas en Tándem , Avispas/crecimiento & desarrollo , Zea mays/metabolismo , alfa-Amilasas/farmacología
20.
Mycorrhiza ; 28(1): 1-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28725961

RESUMEN

In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.


Asunto(s)
Membrana Celular/genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Proteínas de la Membrana/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteoma , Membrana Celular/metabolismo , Glomeromycota/fisiología , Medicago truncatula/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA