Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Sci (Lond) ; 136(17): 1281-1301, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35894060

RESUMEN

Cardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome's microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs down-regulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI.


Asunto(s)
Exosomas , MicroARNs , Infarto del Miocardio , Tejido Adiposo/metabolismo , Animales , Células Endoteliales/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Células Madre
2.
Heart Lung Circ ; 28(2): 263-271, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29503239

RESUMEN

BACKGROUND: Preconditioning of cell recipients may exert a significant role in attenuating the hostility of the infarction milieu, thereby enhancing the efficacy of cell therapy. This study was conducted to examine whether exercise training potentiates the cardioprotective effects of adipose-derived stem cell (ADSC) transplantation following myocardial infarction (MI) in rats. METHODS: Four groups of female Fisher-344 rats were studied: Sham; non-trained rats with MI (sMI); non-trained rats with MI submitted to ADSCs transplantation (sADSC); trained rats with MI submitted to ADSCs (tADSC). Rats were trained 9 weeks prior to MI and ADSCs transplantation. Echocardiography was applied to assess cardiac function. Myocardial performance was evaluated in vitro. Protein expression analyses were carried out by immunoblotting. Periodic acid-Schiff staining was used to analyse capillary density and apoptosis was evaluated with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. RESULTS: Echocardiography performed 4 weeks after the infarction revealed attenuated scar size in the both sADSC and tADSC groups compared to the sMI group. However, fractional shortening was improved only in the tADSC group. In vitro myocardial performance was similar between the tADSC and Sham groups. The expression of phosphoSer473Akt1 and VEGF were found to be higher in the hearts of the tADSC group compared to both the sADSC and sMI groups. Histologic analysis demonstrated that tADSC rats had higher capillary density in the remote and border zones of the infarcted sites compared to the sMI rats. CONCLUSIONS: Preconditioning with exercise induces a pro-angiogenic milieu that may potentiate the therapeutic effects of ADSCs on cardiac remodelling following MI.


Asunto(s)
Infarto del Miocardio , Condicionamiento Físico Animal , Trasplante de Células Madre , Remodelación Ventricular , Animales , Femenino , Modelos Animales de Enfermedad , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Condicionamiento Físico Animal/métodos , Distribución Aleatoria , Ratas Endogámicas F344 , Trasplante de Células Madre/métodos , Remodelación Ventricular/fisiología , Ratas
3.
Am J Physiol Heart Circ Physiol ; 310(11): H1760-72, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199127

RESUMEN

Circulating dipeptidyl peptidase IV (DPPIV) activity correlates with cardiac dysfunction in humans and experimental heart failure (HF) models. Similarly, inflammatory markers are associated with poorer outcomes in HF patients. However, the contributions of DPPIV to inflammation in HF remain elusive. Therefore, this study aimed to investigate whether the cardioprotective effects of DPPIV inhibition after myocardial injury are accompanied by reduced cardiac inflammation, whether circulating DPPIV activity correlates with the levels of systemic inflammatory markers in HF patients, and whether leukocytes and/or splenocytes may be one of the sources of circulating DPPIV in HF. Experimental HF was induced in male Wistar rats by left ventricular myocardial injury after radiofrequency catheter ablation. The rats were divided into three groups: sham, HF, and HF + DPPIV inhibitor (sitagliptin). Six weeks after surgery, cardiac function, perfusion and inflammatory status were evaluated. Sitagliptin treatment improved cardiac function and perfusion, reduced macrophage infiltration, and diminished the levels of inflammatory biomarkers including TNF-α, IL-1ß, and CCL2. In HF patients, serum DPPIV activity correlated with CCL2, suggesting that leukocytes may be the source of circulating DPPIV in HF. Unexpectedly, DPPIV release was higher in splenocytes from HF rats and similar in HF circulating mononuclear cells compared with those from sham, suggesting an organ-specific modulation of DPPIV in HF. Collectively, our data provide new evidence that the cardioprotective effects of DPPIV inhibition in HF may be due to suppression of inflammatory cytokines. Moreover, they suggest that a vicious circle between DPPIV and inflammation may contribute to HF development and progression.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Corazón/efectos de los fármacos , Inflamación/tratamiento farmacológico , Fosfato de Sitagliptina/uso terapéutico , Animales , Biomarcadores/sangre , Quimiocina CCL2/sangre , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Corazón/fisiopatología , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/fisiopatología , Inflamación/sangre , Inflamación/fisiopatología , Interleucina-1beta/sangre , Macrófagos/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Fosfato de Sitagliptina/farmacología , Factor de Necrosis Tumoral alfa/sangre
4.
Histochem Cell Biol ; 138(2): 305-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22527699

RESUMEN

Spermatogonial stem cells are responsible for the constant production of spermatozoa. These cells differentiate from the gonocytes, but little is known about these cells and their differentiation into spermatogonia. This study analyzed rat gonocyte proliferation, death and distribution as well as their differentiation into spermatogonia. Rat testes were collected at 19 dpc and at 1, 3, 5, 8, 11 and 15 dpp and submitted to apoptosis investigation through morphological analysis and TUNEL, p53 and cleaved caspase 3 labeling. Ki67 and MVH labeling was used to check gonocyte proliferation and quantification, respectively. OCT4 and DBA labeling were used to check gonocyte differentiation. Seminiferous cord length and gonocyte numerical density were measured to check gonocyte distribution along the seminiferous cords. Although a reduction of gonocyte number per testicular section has been observed from 1 to 5 dpp, the total number of these cells did not change. Apoptotic gonocytes were not detected at these ages, suggesting that the reduction in gonocyte number per testicular section was due to their redistribution along the seminiferous cords, which showed continuous growth from 19 dpc to 5 dpp. The first proliferating germ cells were observed at 8 dpp, coinciding with OCT4 upregulation and with the emergence of the first spermatogonia. In conclusion, this study suggests that (a) gonocytes do not die in the first week after birth, but are rather redistributed along the seminiferous cords just before their differentiation into spermatogonia; (b) mitosis resumption and the emergence of the first spermatogonia are coincident with OCT4 upregulation.


Asunto(s)
Proliferación Celular , Animales , Animales Recién Nacidos , Apoptosis , Diferenciación Celular , Antígeno Ki-67/metabolismo , Masculino , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Ratas , Ratas Wistar , Células de Sertoli/citología , Células de Sertoli/metabolismo , Espermatogonias/citología , Espermatogonias/fisiología , Espermatozoides/citología , Espermatozoides/metabolismo , Regulación hacia Arriba
5.
Cells Tissues Organs ; 195(5): 443-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21893932

RESUMEN

Germ cells are the only cells capable of transmitting genetic information from generation to generation. Germ cell development has been widely studied in different species. Among mammals, the mouse is the model used in the majority of studies on germ cell differentiation, sex determination and genetics. In the present study, we suggest that the rat is also a very important model for the investigation of the mechanisms of germ cell development. To study rat germ cell development and compare it with that of mouse, the germ cell markers germ cell nuclear antigen 1 (GCNA1), OCT4, mouse vasa homologue (MVH) and specific surface embryonic antigen 1 (SSEA1) were immunolabeled at different phases of embryonic and postnatal development. SSEA1 and GCNA1 were not detected in rat primordial germ cells and fetal gonocytes. GCNA1 was detected postnatally and was present only in leptotene, zygotene and early pachytene spermatocytes. On the other hand, in mice, these markers were detected in germ cells as soon as 11.5 days postcoitum (dpc). MVH was detected in migrating rat primordial germ cells as well as in those that have already colonized the gonads, whereas in mice, MVH is detected only in germ cells that have reached the gonads. In rats, OCT4-positive germ cells were detected from 13 to 17 dpc, but not at 19 dpc or in postnatal testes. This is in contrast with mice that show OCT4 labeling in both embryonic and adult testes. These data suggest that primordial germ cell development in rats and mice shows considerable differences and that the rat may also be an important model to study the embryonic development of germ cells.


Asunto(s)
Células Germinativas/citología , Testículo/citología , Testículo/embriología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Desarrollo Embrionario , Células Germinativas/metabolismo , Masculino , Ratones , Morfogénesis , Ratas , Testículo/metabolismo
6.
Sci Rep ; 10(1): 12350, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704142

RESUMEN

The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.


Asunto(s)
Células Endoteliales/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Miocardio/metabolismo , Comunicación Paracrina , Animales , Animales Recién Nacidos , Medios de Cultivo Condicionados , Células Endoteliales/citología , Macrófagos/citología , Miocardio/citología , Miocitos Cardíacos , Ratas
7.
Physiol Rep ; 2(8)2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25168870

RESUMEN

One-day-old mice display a brief capacity for heart regeneration after apex resection. We sought to examine this response in a different model and to determine the impact of this early process on long-term tissue perfusion and overall cardiac function in response to stress. Apical resection of postnatal rats at day 1 (P1) and 7 (P7) rendered 18 ± 1.0% and 16 ± 1.3% loss of cardiac area estimated by magnetic resonance imaging (MRI), respectively (P > 0.05). P1 was associated with evidence of cardiac neoformation as indicated by Troponin I and Connexin 43 expression at 21 days postresection, while in the P7 group mainly scar tissue replacement ensued. Interestingly, there was an apparent lack of uniform alignment of newly formed cells in P1, and we detected cardiac tissue hypoperfusion for both groups at 21 and 60 days postresection using SPECT scanning. Direct basal cardiac function at 60 days, when the early lesion is undetectable, was preserved in all groups, whereas under hemodynamic stress the degree of change on LVDEP, Stroke Volume and Stroke Work indicated diminished overall cardiac function in P7 (P < 0.05). Furthermore, the End-Diastolic Pressure-Volume relationship and increased interstitial collagen deposition in P7 is consistent with increased chamber stiffness. Taken together, we provide evidence that early cardiac repair response to apex resection in rats also leads to cardiomyocyte neoformation and is associated to long-term preservation of cardiac function despite tissue hypoperfusion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA