Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(7): 1576-1591, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091038

RESUMEN

The synthesis of type I collagen, the main component of bone matrix, precedes the expression of Runx2, the earliest determinant of osteoblast differentiation. We hypothesized that the energetic needs of osteoblasts might explain this apparent paradox. We show here that glucose, the main nutrient of osteoblasts, is transported in these cells through Glut1, whose expression precedes that of Runx2. Glucose uptake favors osteoblast differentiation by suppressing the AMPK-dependent proteasomal degradation of Runx2 and promotes bone formation by inhibiting another function of AMPK. While RUNX2 cannot induce osteoblast differentiation when glucose uptake is compromised, raising blood glucose levels restores collagen synthesis in Runx2-null osteoblasts and initiates bone formation in Runx2-deficient embryos. Moreover, RUNX2 favors Glut1 expression, and this feedforward regulation between RUNX2 and Glut1 determines the onset of osteoblast differentiation during development and the extent of bone formation throughout life. These results reveal an unexpected intricacy between bone and glucose metabolism.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Glucosa/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Homeostasis , Ratones , Osteoblastos/citología , Alineación de Secuencia , Cráneo/citología
2.
Nature ; 543(7645): 385-390, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28273060

RESUMEN

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood-brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.


Asunto(s)
Regulación del Apetito/fisiología , Huesos/metabolismo , Lipocalina 2/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Huesos/citología , AMP Cíclico/metabolismo , Ingestión de Alimentos/fisiología , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glucosa/metabolismo , Homeostasis , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Masculino , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Osteoblastos/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Delgadez/metabolismo
4.
Am J Physiol Endocrinol Metab ; 317(2): E185-E193, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964706

RESUMEN

Weight regain after weight loss is a well-described phenomenon in both humans and animal models of obesity. Reduced energy expenditure and increased caloric intake are considered the main drivers of weight regain. We hypothesized that adipose tissue with obesity memory (OM) has a tissue-autonomous lipolytic defect, allowing for increased efficiency of lipid storage. We utilized a mouse model of diet-induced obesity, which was subjected to 60% caloric restriction to achieve lean body weight, followed by a short period of high-fat diet (HFD) rechallenge. Age-matched lean mice fed HFD for the first time were used as the control group. Upon rechallenge with HFD, mice with OM had higher respiratory exchange ratios than lean mice with no OM despite comparable body weight, suggesting higher utilization of glucose over fatty acid oxidation. White adipose tissue explants with OM had comparable lipolytic response after caloric restriction; however, reduced functional lipolytic response to norepinephrine was noted as early as 5 days after rechallenge with HFD and was accompanied by reduction in hormone-sensitive lipase serine phosphorylation. The relative lipolytic defect was associated with increased expression of inflammatory genes and a decrease in adrenergic receptor genes, most notably Adrb3. Taken together, white adipose tissue of lean mice with OM shows increased sensitization to HFD compared with white adipose tissue with no OM, rendering it resistant to catecholamine-induced lipolysis. This relative lipolytic defect is tissue-autonomous and could play a role in the rapid weight regain observed after weight loss.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Lipólisis/fisiología , Aumento de Peso/fisiología , Animales , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Aumento de Peso/genética
5.
J Biol Chem ; 290(41): 24772-83, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26306048

RESUMEN

We previously reported that the skeletal muscle-specific overexpression of Fyn in mice resulted in a severe muscle wasting phenotype despite the activation of mTORC1 signaling. To investigate the bases for the loss of muscle fiber mass, we examined the relationship between Fyn activation of mTORC1, JNK, and endoplasmic reticulum stress. Overexpression of Fyn in skeletal muscle in vivo and in HEK293T cells in culture resulted in the activation of IRE1α and JNK, leading to increased cell death. Fyn synergized with the general endoplasmic reticulum stress inducer thapsigargin, resulting in the activation of IRE1α and further accelerated cell death. Moreover, inhibition of mTORC1 with rapamycin suppressed IRE1α activation and JNK phosphorylation, resulting in protecting cells against Fyn- and thapsigargin-induced cell death. Moreover, rapamycin treatment in vivo reduced the skeletal muscle IRE1α activation in the Fyn-overexpressing transgenic mice. Together, these data demonstrate the presence of a Fyn-induced endoplasmic reticulum stress that occurred, at least in part, through the activation of mTORC1, as well as subsequent activation of the IRE1α-JNK pathway driving cell death.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas c-fyn/genética , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología
6.
EMBO Rep ; 14(9): 795-803, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23907538

RESUMEN

Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2-positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)-like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5-cell-derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis-driven increases in fatty acid oxidation in 'Beige' cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Autofagia , Metabolismo Energético , Glucosa/metabolismo , Homeostasis , Músculo Esquelético/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Tejido Adiposo Pardo/crecimiento & desarrollo , Animales , Proteína 7 Relacionada con la Autofagia , Diferenciación Celular , Ácidos Grasos/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Factor 5 Regulador Miogénico/genética , Células Madre/citología , Células Madre/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 307(10): R1251-9, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25231351

RESUMEN

Pompe disease is due to a deficiency in acid-α-glucosidase (GAA) and results in debilitating skeletal muscle wasting, characterized by the accumulation of glycogen and autophagic vesicles. Given the role of lysosomes as a platform for mTORC1 activation, we examined mTORC1 activity in models of Pompe disease. GAA-knockdown C2C12 myoblasts and GAA-deficient human skin fibroblasts of infantile Pompe patients were found to have decreased mTORC1 activation. Treatment with the cell-permeable leucine analog L-leucyl-L-leucine methyl ester restored mTORC1 activation. In vivo, Pompe mice also displayed reduced basal and leucine-stimulated mTORC1 activation in skeletal muscle, whereas treatment with a combination of insulin and leucine normalized mTORC1 activation. Chronic leucine feeding restored basal and leucine-stimulated mTORC1 activation, while partially protecting Pompe mice from developing kyphosis and the decline in muscle mass. Leucine-treated Pompe mice showed increased spontaneous activity and running capacity, with reduced muscle protein breakdown and glycogen accumulation. Together, these data demonstrate that GAA deficiency results in reduced mTORC1 activation that is partly responsible for the skeletal muscle wasting phenotype. Moreover, mTORC1 stimulation by dietary leucine supplementation prevented some of the detrimental skeletal muscle dysfunction that occurs in the Pompe disease mouse model.


Asunto(s)
Suplementos Dietéticos , Dipéptidos/farmacología , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Complejos Multiproteicos/metabolismo , Músculo Esquelético/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , alfa-Glucosidasas/deficiencia , Animales , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Enfermedad del Almacenamiento de Glucógeno Tipo II/fisiopatología , Humanos , Insulina/farmacología , Cifosis/enzimología , Cifosis/patología , Cifosis/fisiopatología , Cifosis/prevención & control , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/enzimología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Atrofia Muscular/prevención & control , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Interferencia de ARN , Transfección , alfa-Glucosidasas/genética
8.
Nat Commun ; 14(1): 38, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596796

RESUMEN

Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.


Asunto(s)
Tejido Adiposo , Catecolaminas , Obesidad , Animales , Humanos , Masculino , Ratones , Tejido Adiposo/metabolismo , Adiposidad , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Catecolaminas/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Norepinefrina/metabolismo , Obesidad/genética , Obesidad/metabolismo
9.
Cell Metab ; 5(5): 371-81, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17488639

RESUMEN

Mice null for Fyn (a member of the Src family of nonreceptor tyrosine kinases) display a reduced percentage of adipose mass associated with decreased adipocyte cell size. In parallel, there is a substantial reduction in fasting plasma glucose, insulin, triglycerides, and free fatty acids concomitant with decreased intrahepatocellular and intramyocellular lipid accumulation. Importantly, the Fyn null mice exhibit improved glucose tolerance resulting from increased peripheral tissue (adipose and skeletal muscle) insulin sensitivity with a very small effect in the liver. Moreover, whole-body, adipose, and skeletal muscle fatty acid uptake and oxidation are increased along with AMP kinase activation and acetyl-CoA carboxylase inhibition. Together, these data demonstrate crosstalk between Src-family kinase activity and fatty acid oxidation and show that the loss of Fyn markedly improves peripheral tissue insulin sensitivity by relieving a selective negative modulation of AMP kinase activity in adipose tissue and skeletal muscle.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Adenilato Quinasa/metabolismo , Animales , Western Blotting , Calorimetría Indirecta , Glucosa , Ratones , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-fyn/genética , Tomografía Computarizada por Rayos X
10.
Cell Metab ; 5(2): 151-6, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17276357

RESUMEN

Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.


Asunto(s)
Envejecimiento , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Guanidinas/administración & dosificación , Guanidinas/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Condicionamiento Físico Animal , Propionatos/administración & dosificación , Propionatos/farmacología , Ratas , Ratas Endogámicas F344 , Ribonucleótidos/farmacología
11.
Am J Physiol Endocrinol Metab ; 302(5): E532-9, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22185839

RESUMEN

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.


Asunto(s)
Citocromo P-450 CYP2E1/fisiología , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Transporte Biológico , Citocromo P-450 CYP2E1/genética , Citocinas/sangre , Hígado Graso/etiología , Hígado Graso/patología , Hígado Graso/prevención & control , Glucosa/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/prevención & control , Hiperlipidemias/sangre , Hiperlipidemias/etiología , Hiperlipidemias/prevención & control , Insulina/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Terapia Molecular Dirigida , Fibras Musculares Esqueléticas/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Obesidad/prevención & control , Transducción de Señal
12.
Sci Adv ; 8(17): eabm7012, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35476450

RESUMEN

The immune checkpoint B7-H3 (CD276) is a member of the B7 family that has been studied in the tumor microenvironment and immunotherapy, but its potential role in metabolism remains largely unknown. Here, we show that B7-H3 is highly expressed in mouse and human adipose tissue at steady state, with the highest levels in adipocyte progenitor cells. B7-H3 is rapidly down-regulated upon the initiation of adipocyte differentiation. Combined RNA sequencing and metabolic studies reveal that B7-H3 stimulates glycolytic and mitochondrial activity of adipocyte progenitors. Loss of B7-H3 in progenitors results in impaired oxidative metabolism program and increased lipid accumulation in derived adipocytes. Consistent with these observations, mice knocked out for B7-H3 develop spontaneous obesity, metabolic dysfunction, and adipose tissue inflammation. Our results reveal an unexpected metabolic role for B7-H3 in adipose tissue and open potential new avenues for the treatment of metabolic diseases by targeting the B7-H3 pathway.

13.
Elife ; 112022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35254259

RESUMEN

Cholinergic and sympathetic counter-regulatory networks control numerous physiological functions, including learning/memory/cognition, stress responsiveness, blood pressure, heart rate, and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels, and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.


Asunto(s)
Acetilcolina , Unión Neuromuscular , Acetilcolina/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Colinérgicos/metabolismo , Ratones , Músculo Esquelético/metabolismo , Unión Neuromuscular/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Termogénesis
14.
Mol Metab ; 48: 101227, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33812059

RESUMEN

OBJECTIVE: Liver glycogen levels are dynamic and highly regulated by nutrient availability as the levels decrease during fasting and are restored during the feeding cycle. However, feeding in the presence of fructose in water suppresses glycogen accumulation in the liver by upregulating the expression of the glucose-6-phosphatase catalytic subunit (G6pc) gene, although the exact mechanism is unknown. We generated liver-specific knockout MED13 mice that lacked the transcriptional Mediator complex kinase module to examine its effect on the transcriptional activation of inducible target gene expression, such as the ChREBP- and FOXO1-dependent control of the G6pc gene promoter. METHODS: The relative changes in liver expression of lipogenic and gluconeogenic genes as well as glycogen levels were examined in response to feeding standard low-fat laboratory chow supplemented with water or water containing sucrose or fructose in control (Med13fl/fl) and liver-specific MED13 knockout (MED13-LKO) mice. RESULTS: Although MED13 deficiency had no significant effect on constitutive gene expression, all the dietary inducible gene transcripts were significantly reduced despite the unchanged insulin sensitivity in the MED13-LKO mice compared to that in the control mice. G6pc gene transcription displayed the most significant difference between the Med13 fl/fl and MED13-LKO mice, particularly when fed fructose. Following fasting that depleted liver glycogen, feeding induced the restoration of glycogen levels except in the presence of fructose. MED13 deficiency rescued the glycogen accumulation defect in the presence of fructose. This resulted from the suppression of G6pc expression and thus G6PC enzymatic activity. Among two transcriptional factors that regulate G6pc gene expression, FOXO1 binding to the G6pc promoter was not affected, whereas ChREBP binding was dramatically reduced in MED13-LKO hepatocytes. In addition, there was a marked suppression of FOXO1 and ChREBP-ß transcriptional activities in MED13-LKO hepatocytes. CONCLUSIONS: Taken together, our data suggest that the kinase module of the Mediator complex is necessary for the transcriptional activation of metabolic genes such as G6pc and has an important role in regulating glycogen levels in the liver through altering transcription factor binding and activity at the G6pc promoter.


Asunto(s)
Dominio Catalítico/genética , Fructosa/metabolismo , Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfatasa/metabolismo , Glucógeno Hepático/biosíntesis , Hígado/metabolismo , Complejo Mediador/metabolismo , Transducción de Señal/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Activación Enzimática/genética , Ayuno , Fructosa/farmacología , Expresión Génica , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Glucosa-6-Fosfatasa/genética , Hepatocitos/metabolismo , Resistencia a la Insulina/genética , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Masculino , Complejo Mediador/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Cell Metab ; 25(1): 182-196, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011087

RESUMEN

The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Metabolismo , Condicionamiento Físico Animal , Adenilato Quinasa/metabolismo , Animales , Autofagia/genética , Núcleo Celular/metabolismo , Metabolismo Energético/genética , Genes Mitocondriales , Genoma , Glucosa/metabolismo , Homeostasis/genética , Insulina/metabolismo , Metabolismo/genética , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transporte de Proteínas , Transducción de Señal/genética
16.
Shock ; 45(6): 677-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26682946

RESUMEN

Lipopolysaccharide (LPS) is known to impair insulin-stimulated muscle glucose uptake (MGU). We determined if increased glucose transport (GLUT4) or phosphorylation capacity (hexokinase II; HKII) could overcome the impairment in MGU. We used mice that overexpressed GLUT4 (GLUT4) or HKII (HK) in skeletal muscle. Studies were performed in conscious, chronically catheterized (carotid artery and jugular vein) mice. Mice received an intravenous bolus of either LPS (10 µg/g body weight) or vehicle (VEH). After 5 h, a hyperinsulinemic-euglycemic clamp was performed. As MGU is also dependent on cardiovascular function that is negatively affected by LPS, cardiac function was assessed using echocardiography. LPS decreased whole body glucose disposal and MGU in wild-type (WT) and HK mice. In contrast, the decrease was attenuated in GLUT4 mice. Although membrane-associated GLUT4 was increased in VEH-treated GLUT4 mice, LPS impaired membrane-associated GLUT4 in GLUT4 mice to the same level as LPS-treated WT mice. This suggested that overexpression of GLUT4 had further benefits beyond preserving transport activity. In fact, GLUT4 overexpression attenuated the LPS-induced decrease in cardiac function. The maintenance of MGU in GLUT4 mice following LPS was accompanied by sustained anaerobic glycolytic flux as suggested by increased muscle Pdk4 expression, and elevated lactate availability. Thus, enhanced glucose transport, but not phosphorylation capacity, ameliorates LPS-induced impairments in MGU. This benefit is mediated by long-term adaptations to the overexpression of GLUT4 that sustain muscle anaerobic glycolytic flux and cardiac function in response to LPS.


Asunto(s)
Glucemia/metabolismo , Insulina/metabolismo , Lipopolisacáridos/metabolismo , Músculo Esquelético/metabolismo , Fosforilación , Animales , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo
17.
Front Physiol ; 6: 393, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26733885

RESUMEN

Muscle wasting that occurs during aging or from disease pathology presents with an accumulation of lipid species termed ceroid or lipofuscin. This unique species of lipid has been characterized in various cell types but its properties and organization in skeletal muscle remains unclear. Using immunofluorescence and transmission electron microscopy, we were able to visualize and characterize an atypical lipid storing organelle in skeletal muscle. White myofibers contain two organelles at each pole of the myonuclei and red myofibers contain many of these structures in and around the perinuclear space. These organelles contain markers for late endosomes, are morphologically similar to multivesicular bodies, store lipid, and hypertrophy in aged muscle and a model of muscle wasting with an accumulation of large amounts of lipofuscin. Rapamycin treatment reduces the multivesicular body hypertrophy, restores late endosomal protein markers, and also increases the number and intensity of lipofuscin deposits. Together, these data demonstrate for the first time a perinuclear organelle in skeletal muscle that hypertrophies in muscle wasting phenotypes and is involved in endocytic lipid storage.

18.
Diabetes ; 64(7): 2636-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25732192

RESUMEN

Adenylyl cyclase type 5 knockout (AC5KO) mice have increased longevity and share a similar phenotype with calorie-restricted wild-type (WT) mice. To determine the in vivo metabolic properties of AC5 deficiency, we compared the effects of standard diet (SD) and high-fat diet (HFD) on obesity, energy balance, glucose regulation, and insulin sensitivity. AC5KO mice on SD had reduced body weight and adiposity compared with WT mice. Blood cholesterol and triglyceride levels were also significantly reduced in AC5KO mice. Indirect calorimetry demonstrated increased oxygen consumption, respiratory exchange ratio, and energy expenditure in AC5KO compared with WT mice on both SD and HFD. AC5KO mice also displayed improved glucose tolerance and increased whole-body insulin sensitivity, accompanied by decreased liver glycogen stores. Euglycemic-hyperinsulinemic clamp studies confirmed the marked improvement of glucose homeostasis and insulin sensitivity in AC5KO mice primarily through increased insulin sensitivity in skeletal muscle. Moreover, the genes involved in mitochondrial biogenesis and function were significantly increased in AC5KO skeletal muscle. These data demonstrate that deficiency of AC5 protects against obesity, glucose intolerance, and insulin resistance, supporting AC5 as a potential novel therapeutic target for treatment of obesity and diabetes.


Asunto(s)
Adenilil Ciclasas/deficiencia , Resistencia a la Insulina , Obesidad/prevención & control , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/fisiología , Animales , Dieta Alta en Grasa , Metabolismo Energético , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo
19.
PLoS One ; 9(2): e89199, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586592

RESUMEN

Mice treated with the antidepressant trans-2-phenylcyclopropylamine (2-PCPA) were protected against diet-induced-obesity, and adiposity was reversed in pre-established diet-induced obese mice. Contrary to a recent report that inhibition of lysine-specific demethylase-1 by 2-PCPA results in increased energy expenditure, long-term 2-PCPA treatment had no such effect but its protection against obesity was associated with increased spontaneous locomotor activity, Moreover, pair feeding to assure equal caloric intake in wild type mice as well as in genetic hyperphagic mice (ob/ob) also resulted in weight reduction in 2-PCPA treated mice that correlated with increased activity but no change in energy expenditure. Similarly, short-term intraperitoneal injections of 2-PCPA did not affect food intake but caused a substantial increase in locomotor activity in the light cycle that correlated with increased energy expenditure, whereas activity and energy expenditure were unchanged in the dark cycle. Lastly, 2-PCPA was also effective in reducing obesity in genetic UCP1 null mice. These data suggest that 2-PCPA can reduce obesity by decreasing food intake in the long term while increasing activity in the short-term. However, the protective and weight loss effects of 2-PCPA are independent of UCP1-regulated thermogenesis or basal energy expenditure.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Obesidad/prevención & control , Tranilcipromina/uso terapéutico , Animales , Composición Corporal/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Tranilcipromina/farmacología
20.
Cell Rep ; 9(5): 1574-1583, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466256

RESUMEN

Adipose tissue inflammation is one pathway shown to mediate insulin resistance in obese humans and rodents. Obesity induces dynamic cellular changes in adipose tissue to increase proinflammatory cytokines and diminish anti-inflammatory cytokines. However, we have found that anti-inflammatory interleukin-13 (IL-13) is unexpectedly induced in adipose tissue of obese humans and high-fat diet (HFD)-fed mice, and the source of IL-13 is primarily the adipocyte. Moreover, HFD-induced proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and IL-1ß mediate IL-13 production in adipocytes in an IKKß-dependent manner. In contrast, adipocyte-specific IKKß-deficient mice show diminished IL-13 expression and enhanced inflammation after HFD feeding, resulting in a worsening of the insulin-resistant state. Together these data demonstrate that although IKKß activates the expression of proinflammatory mediators, in adipocytes, IKKß signaling also induces the expression of the anti-inflammatory cytokine IL-13, which plays a unique protective role by limiting adipose tissue inflammation and insulin resistance.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/metabolismo , Quinasa I-kappa B/metabolismo , Interleucina-13/fisiología , Comunicación Paracrina , Adipocitos/inmunología , Tejido Adiposo/inmunología , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Epidídimo/metabolismo , Retroalimentación Fisiológica , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Masculino , Ratones Noqueados , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA