Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Reprod Biol Endocrinol ; 20(1): 146, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180890

RESUMEN

BACKGROUND: Tamoxifen (TAM) is a frequently-used treatment for breast cancer (BC). But the TAM resistance seriously affects the patient therapeutic effect. Previous research indicated that circular RNAs (circRNAs) might participate in the regulatory processes of BC. Here, we discovered the parts of circular RNA tripartite motif-containing 28 (circTRIM28) in BC. METHODS: CircTRIM28, microRNA-409-3p (miR-409-3p), and high mobility group AT-hook 2 (HMGA2) levels were perceived by qRT-PCR and western blot. Moreover, the biological functions of the cells were examined. Furthermore, dual-luciferase report was employed to reconnoiter the targeted relationship between miR-409-3p and circTRIM28 or HMGA2. RESULTS: CircTRIM28 and HMGA2 were augmented, and the miR-409-3p was repressed in BC. Silencing circTRIM28 enhanced tamoxifen sensitivity and cell apoptosis, whereas hampered cell development in BC cells. In mechanism, circTRIM28 could sponge miR-409-3p to increase HMGA2. In addition, silencing circTRIM28 impeded tumor growth. CONCLUSION: CircTRIM28 facilitated the BC via miR-409-3p/HMGA2.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteína HMGA2/metabolismo , Humanos , MicroARNs/genética , ARN Circular/genética , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
2.
Ecotoxicol Environ Saf ; 214: 112064, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33691241

RESUMEN

Hydrophyte decomposition caused large amounts of dissolved organic matter (DOM) to enter aquatic environment that influence the migration and transformation of heavy metals (HMs). Six hydrophytes with five dry weight gradients (DWG) were used for the decomposition experiments. The results showed that protein-like materials occupy relatively high content in the hydrophyte-derived DOM. The binding properties of DOM-Cu(II) have been explored by using two-dimensional correlation spectroscopy (2D-COS) in conjunction with synchronous fluorescence spectroscopy (SFS) and log-transformed SFS. The weak signals of binding site can be amplified by the log-transformed 2D-COS analysis. Herein, more binding sites can be identified by the log-transformed 2D-COS analysis. The results reveal that tryptophan-like materials show a preferential sequence of binding Cu(II) in the hydrophyte-derived DOM with a relatively low DWG and sediment DOM, and fulvic-like substances indicate a preferential sequence of binding Cu(II) in the hydrophyte-derived DOM with a relatively high DWG. Meanwhile, the results of binding parameters indicate that the log K is the range of 3.61-4.25, 4.33-4.74, 4.59-4.97, 3.91-4.41, and 4.14-4.78 for D1-D5, respectively, suggesting that hydrophyte decomposition can change the binding affinity between DOM components and Cu(II). The complexes of fluorescent components with Cu(II) showed a high log K value at long wavelength (e.g. humic-like substances), and a relatively low fluorescent ligand proportion (f%) at shorter wavelength in the hydrophyte-derived DOM. However, the log K is the range of 3.08-4.31, 4.09-4.45, 3.93-4.35, 4.39-4.75, and 3.95-4.36 for C1-C5, separately. Protein-like substances with Cu(II) showed a relatively high log K value with the exception of C4. The log-transformed 2D-COS can be an analytical tool to understand the binding heterogeneity of DOM with HMs. The study can provide a guide for managing and controlling the effects of hydrophyte decomposition.


Asunto(s)
Cobre/metabolismo , Contaminantes Químicos del Agua/metabolismo , Colorantes , Cobre/química , Sustancias Húmicas/análisis , Metales Pesados/química , Espectrometría de Fluorescencia/métodos
3.
J Environ Manage ; 288: 112476, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33827020

RESUMEN

This study established a Fe2+/persulfate oxidation system to dewater sludge in WWTPs. Dewatering performance, persulfate consumption and the variations of sludge pH, TN and TP during dewatering process were monitored. EPS and ζ-potential behaviors for ameliorating sludge dewatering was investigated. Transformation, leaching toxicity and environmental risk of heavy metals in sludge during dewatering were determined. Results demonstrated that after treated by Fe2+/persulfate oxidation system with 0.6 mmol/g-VS of persulfate at Fe2+/persulfate molar ratio 0.6, WC decreased to 53.5% and SCST increased to 4.15, which implied an excellent improvement of sludge dewatering. The fast persulfate consumption, the decrease of sludge pH and the increase of TN illustrated the positive effects of Fe2+ in activating persulfate and the decomposition of EPS by the activation products, SO4•- and •OH. Another product (Fe3+) generated during persulfate activation could decrease the content of phosphorus-containing matter (released from EPS decomposition) through the precipitation reaction with PO43-. The decrease of TOC and UV-254 happened in HPO-A, HPO-N and TPI-A organic substance of EPS (mainly contained in TB-EPS fraction) indicated that the destruction of hydrophobic organic matter of EPS would stimulate the release of bound water, which was beneficial to dewater sludge. The largest protein loss in TB-EPS (from 24.5 to 10.7 mg/L) indicated that the effective decomposition of TB-EPS could significantly ameliorate sludge dewatering. The increase of ζ-potential indicated the degradation of organic matter in EPS with negative charge. To sum up, the destruction of protein-like substances in hydrophobic organic matter of TB-EPS was the main mechanism for improving sludge dewatering by Fe2+/persulfate oxidation system. 3D-EEM fluorescence spectroscopy analysis proved that these protein-like substances were mainly tryptophan protein and humic acid. Moreover, due to the disruption of EPS, the contents of heavy metals in sludge, and their leaching toxicity and environmental risk were reduced. Therefore, Fe2+/persulfate oxidation system has potential and application prospects to improve sludge dewatering and optimize sludge management in WWTPs.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Oxidantes , Oxidación-Reducción , Polímeros , Eliminación de Residuos Líquidos , Agua
4.
J Environ Sci (China) ; 25(9): 1824-32, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520725

RESUMEN

Two sampling sites representing the urban and suburban area of Chengdu, China were sampled and analyzed for selected chemicals to characterize the evolution of the chemical composition of fogwater. A trend of total organic carbon (TOC) > total nitrogen (TN) > total inorganic carbon (TIC) was observed for both sites. Variation of inorganic ions indicated that inorganic pollutants were not accumulated in the fog. Concentrations of n-alkanes (C11-C37) at the urban site ranged from 7.58 to 27.75 ng/mL while at the suburban site concentrations were 2.57-21.55 ng/mL. The highest concentration of n-alkanes was observed in the mature period of fog (393.12 ng/mL) which was more than ten times that in the fog formation period (27.83 ng/mL) and the fog dissipation period (14.87 ng/mL). Concentrations of Sigma15PAHs were in the range of 7.27-38.52 ng/mL at the urban site and 2.59-22.69 ng/mL at the suburban site. Contents of PAHs in the mature period of fog (27.15 ng/mL) > fog dissipation period (11.59 ng/mL) > fog formation period (6.42 ng/mL). Concentrations of dicarboxylic acids (C5-C9) ranged from 10.92 to 40.78 ng/mL, with glutaric acid (C5) as the dominant dicarboxylic acid. These data provide strong indications of the accumulation of certain organic chemicals of environmental concern in fog and fog water, and provide additional insights about processes in urban and suburban air acting on organic chemicals with similar physical chemical properties.


Asunto(s)
Contaminantes Atmosféricos/química , Estaciones del Año , Tiempo (Meteorología) , China , Ácidos Dicarboxílicos/análisis , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Compuestos Inorgánicos/análisis , Compuestos Orgánicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
5.
Huan Jing Ke Xue ; 41(5): 2349-2357, 2020 May 08.
Artículo en Zh | MEDLINE | ID: mdl-32608853

RESUMEN

To realize a simultaneous partial nitrification, ANAMMOX (anaerobic ammonium oxidation), and denitrification (SNAD) process treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor (CFBR), we first gradually increased the influent ammonium (NH4+-N) concentration, and then enhanced the ADLSW ratio in the influent during operation; dissolved oxygen (DO) was controlled at (0.4±0.1) mg·L-1 by adjusting the air flow rate, and the temperature was kept at (30±1)℃. Meanwhile, high-throughput sequencing and quantitative PCR (polymerase chain reaction) techniques were used to analyze the bacterial community shifts and the amount of dominant nitrogen removal bacteria. The results demonstrated that a successful start-up of the SNAD process was accomplished in 150 d, and replacement of the actual biogas slurry was completed in 298 d. The effluent (NO3--N+NO2--N)/ΔNH4+-N value was less than 0.11, and the average removal rates of NH4+-N and TN (total nitrogen) increased to 63.26% and 55.71%, respectively. Moreover, high-throughput sequencing results demonstrated that the dominant microbial populations at phylum level were Chloroflexi (with a relative abundance of 50.78%), Proteobacteria (13.34%), and Planctomycetes (9.26%). The relative abundance of Nitrosomonas increased from 1.55% to 1.98%. In addition, the relative abundance of Candidatus_Brocadia and Candidatus_Kuenenia increased from 0.01% and (<0.01%) to 4.66% and 4.18%, respectively, and the relative abundance of Denitratisoma increased from (<0.01%) to 2.06%. Meanwhile, qPCR analysis showed that the amounts of ammonia-oxidizing bacteria, ANAMMOX, and denitrifying bacteria increased significantly compared with the inoculated sludge. An efficient and stable nitrogen removal rate can be achieved, and the follow-up processing cost can be reduced, by application of the SNAD treatment process for ADLSW.


Asunto(s)
Nitrógeno , Aguas Residuales , Anaerobiosis , Animales , Bacterias , Biopelículas , Reactores Biológicos , Desnitrificación , Oxidación-Reducción , Aguas del Alcantarillado , Porcinos
6.
Environ Sci Pollut Res Int ; 26(10): 9842-9850, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734912

RESUMEN

Efforts to improve sludge resource utilization have become increasingly important. In this study, humic acid (HA) was extracted from sludge samples collected from a sewage treatment plant, and then used for the adsorption of heavy metals. We used two-dimensional correlation spectroscopy (2D-COS) integrated with Fourier-transform infrared spectroscopy (FTIR) to explore the adsorption between sludge HA (HA) and three metal ions (Cu, Ni, and Pb). The resulting adsorbing data conformed to the isotherm of Langmuir adsorption. The maximum capacity values (qm) were 5.34, 1.49, and 26.29.8 mg/g for Cu, Ni, and Pb, respectively. The data from 2D-FTIR-COS analysis showed that the susceptibility of the functional group followed the order 2300 → 1130 → 1330 → 1480 → 1580 cm-1 for Cu(II) and Ni(II), and 2300 → 1130 → 1330 → 1480 → 1200 → 1580 cm-1 for Pb(II). The sludge HA with Pb(II) showed more adsorption sites than sludge HA with Cu(II) and Ni(II), and these adsorption sites could preferentially bond with Pb(II) at × 1 compared with Cu(II) and Ni(II). Our findings indicate that 2D-FTIR-COS technology has great potential for application as a useful tool for understanding the adsorption mechanism between adsorbents with heavy metals.


Asunto(s)
Sustancias Húmicas/análisis , Metales Pesados/química , Contaminantes Químicos del Agua/química , Adsorción , Metales Pesados/análisis , Aguas del Alcantarillado/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
7.
Huan Jing Ke Xue ; 37(12): 4741-4749, 2016 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-29965316

RESUMEN

The mature aerobic granular sludge (AGS) was inoculated in an sequencing batch reactor (SBR) to treat the simulation wastewater with low carbon nitrogen ratio (COD/N). The start-up characteristics of partial nitritation (PN) based on gradually increasing influent ammonia concentration strategy were investigated. The reactor was operated at dissolved oxygen (DO) of 0.8 mg·L-1, pH 7.5-8.5 and 30℃.The PN was realized in the AGS-SBR within 60 days. From day 61 and onwards, the nitrite accumulation efficiency of 80% was achieved throughout the experiment. Meanwhile, the total nitrogen average removal rate was maintained at a relatively high level of 64.54%, and the effluent NO2--N/NH4+-N ratio reached 1.16, which was a suitable mixture to feed subsequent anammox. Finally, we also investigated the bacterial abundances in AGS-SBR in the PN period (PN-AGS-SBR) through Illumina 16S rRNA gene MiSeq sequencing. The dominant microbial communities at genus level were subjected to sequence analysis. The results revealed that the relative abundance of Candidate-division-TM7-norank was 68.63%, Saprospiraceae-uncultured was 8.26%, Thauera was 4.63%, Denitratisoma was 3.16%, Anaerolineaceae-uncultured was 1.63% and Anaerovorax was 1.39%, respectively. Nitrosomonas, Thauera, Denitratisoma and Bacillu were considered as the main organisms responsible for nitrogen removal. Meanwhile, various denitrification pathways, such as autotrophic denitrification, the denitrification and anaerobic ammonia oxidation of nitrogen, coexisted in PN-AGS-SBR system.


Asunto(s)
Bacterias/clasificación , Reactores Biológicos/microbiología , Desnitrificación , Aguas del Alcantarillado/microbiología , Nitrógeno , ARN Ribosómico 16S , Eliminación de Residuos Líquidos , Aguas Residuales
8.
Bioresour Technol ; 177: 393-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479691

RESUMEN

This study investigated the characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Production of the bioflocculant was positively associated with cell growth and a highest value of 2.4 g L(-1) was obtained. During the kaolin suspension flocculation, charge neutralization and inter-particle bridging were proposed as the reasons for enhanced performance. Apart from this, the bioflocculant showed good performances in sludge dewatering and swine wastewater pretreatment. After conditioning by the bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of the sludge reached 18.4% and 4.8×10(12) m kg(-1), respectively, which were much better than that by conventional chemical flocculants. In the swine wastewater pretreatment, the removal efficiencies of COD, ammonium, and turbidity reached 48.3%, 43.6% and 75.8% at pH 8.0 when the bioflocculant dose was adjusted to 20 mg L(-1).


Asunto(s)
Oryza/química , Residuos , Animales , Estabilidad de Enzimas , Floculación , Hidrólisis , Caolín/química , Aguas del Alcantarillado/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Suspensiones , Porcinos , Temperatura , Factores de Tiempo , Aguas Residuales , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA