Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(3): 030801, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763392

RESUMEN

In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the bottlenecks lies in the exponential decay of the key rate with respect to the transmission distance. Recently proposed schemes mainly focus on achieving longer distances by creating a long-arm single-photon interferometer over two communication parties. Despite their advantageous performance over long communication distances, the requirement of phase locking between two remote lasers is technically challenging. By adopting the recently proposed mode-pairing idea, we realize high-performance quantum key distribution without global phase locking. Using two independent off-the-shelf lasers, we show a quadratic key-rate improvement over the conventional measurement-device-independent schemes in the regime of metropolitan and intercity distances. For longer distances, we also boost the key rate performance by 3 orders of magnitude via 304 km commercial fiber and 407 km ultralow-loss fiber. We expect this ready-to-implement high-performance scheme to be widely used in future intercity quantum communication networks.

2.
Phytother Res ; 37(6): 2454-2471, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36772986

RESUMEN

Mitochondrial inflammation triggered by abnormal mitochondrial division and regulated by the Drp1/HK1/NLRP3 pathway is correlated with the progression of aging-associated cognitive impairment (AACI). Alpinetin is a novel flavonoid derived from Zingiberaceae that has many bioactivities such as antiinflammation and anti-oxidation. However, whether alpinetin alleviates AACI by suppressing Drp1/HK1/NLRP3 pathway-inhibited mitochondrial inflammation is still unknown. In the present study, D-galactose (D-gal)-induced aging mice and BV-2 cells were used, and the effects of alpinetin on learning and memory function, neuroprotection and activation of the Drp1/HK1/NLRP3 pathway were investigated. Our data indicated that alpinetin significantly alleviated cognitive dysfunction and neuronal damage in the CA1 and CA3 regions of D-gal-treated mice. Moreover, D-gal-induced microglial activation was markedly reduced by alpinetin by inhibiting the Drp1/HK1/NLRP3 pathway-suppressed mitochondrial inflammation, down-regulating the levels of p-Drp1 (s616), VDAC, NLRP3, ASC, Cleaved-caspase 1, IL-18, and IL-1ß, and up-regulating the expression of HK1. Furthermore, after Drp1 inhibition by Mdivi-1 in vitro, the inhibitory effect of alpinetin on Drp1/HK1/NLRP3 pathway was more evident. In summary, the current results implied that alpinetin attenuated aging-related cognitive deficits by inhibiting the Drp1/HK1/NLRP3 pathway and suppressing mitochondrial inflammation, suggesting that the inhibition of the Drp1/HK1/NLRP3 pathway is one of the mechanisms by which alpinetin attenuates AACI.


Asunto(s)
Disfunción Cognitiva , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/tratamiento farmacológico , Envejecimiento , Galactosa/efectos adversos , Disfunción Cognitiva/tratamiento farmacológico
3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982438

RESUMEN

Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.


Asunto(s)
Ferroptosis , Osteoartritis , Humanos , Apoptosis/fisiología , Muerte Celular , Piroptosis , Osteoartritis/etiología , Osteoartritis/terapia , Osteoartritis/metabolismo
4.
Mod Rheumatol ; 33(5): 1007-1015, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130241

RESUMEN

OBJECTIVES: To evaluate the efficacy of ultrasound and contrast-enhanced ultrasound (CEUS) in disease activity assessment of Takayasu arteritis (TA) with carotid involvement. METHODS: This is a cohort study of 115 patients of TA with carotid involvement. We investigated correlations between clinical data, sonographic features, and CEUS enhancement at the site most prominent lesion of each patient. Disease activity was assessed by the National Institute of Health Kerr criteria. Sonographic findings were compared with follow-up examinations. CEUS was repeated after a 3-7 months interval in 35 patients to evaluate change of CEUS enhancement after treatment. RESULTS: Extensiveness of CEUS enhancement at most prominent carotid lesions had significant correlations with disease activity by the Kerr criteria (P < .001). The specificity of extensive enhancement for indicating active disease was 95%, while sensitivity was 67%. Patients with active disease showed greater arterial wall thickness and more prominent reduction of arterial wall thickness after treatment. Most of the patients (68%) with subsided active disease after treatment featured decrease of CEUS enhancement. CONCLUSIONS: Extensiveness of enhancement by CEUS and arterial wall thickness by ultrasonography may be useful markers for initial and follow-up assessment of disease activity of TA with common carotid artery involvement.


Asunto(s)
Arteritis de Takayasu , Humanos , Arteritis de Takayasu/diagnóstico por imagen , Arteritis de Takayasu/patología , Estudios de Cohortes , Ultrasonografía , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Medios de Contraste
5.
Opt Express ; 30(13): 22788-22797, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224969

RESUMEN

We propose a rigorous calibration method for homodyne detection efficiency, which combines all the factors that affect detection efficiency to calibrate together through the actual homodyne detection. With this method, the transmittance converted from electronic noise in the one-time calibration method of the shot noise can be attributed to the detection inefficiency. Thus, a trusted detection noise-free model for continuous-variable quantum key distribution (CV-QKD) can be established, which simplifies the calibration of shot noise while having the same performance as the trusted detection noise model. We demonstrate this calibration method with a balanced detector based on a transimpedance amplifier. Experimental results show that detection efficiency will be overestimated if the integration factor of the detector is overlooked. The overestimation of the detection efficiency leads to an underestimation of modulation variance and excess noise when the modulation variance is monitored by the balanced detector, which opens security loopholes. Our method may prove a necessary method in the calibration of detection efficiency for CV-QKD.

6.
Water Sci Technol ; 86(6): 1444-1466, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36178816

RESUMEN

Dissolved oxygen (DO) is one of the most important water quality factors. Maintaining the DO concentration at a desired level is of great value to both wastewater treatment plants (WWTPs) and aquaculture. This review covers various DO control strategies proposed by researchers around the world in the past 20 years. The review focuses on published research related to determination and control of DO concentrations in WWTPs in order to improve control accuracy, save aeration energy, improve effluent quality, and achieve nitrogen removal. The strategies used for DO control are categorized and discussed through the following classification: classical control such as proportional-integral-derivative (PID) control, advanced control such as model-based predictive control, intelligent control such as fuzzy and neural networks, and hybrid control. The review also includes the prediction and control strategies of DO concentration in aquaculture. Finally, a critical discussion on DO control is provided. Only a few advanced DO control strategies have achieved successful implementation, while PID controllers are still the most widely used and effective controllers in engineering practice. The challenges and limitations for a broader implementation of the advanced control strategies are analyzed and discussed.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Nitrógeno/análisis , Oxígeno/análisis , Aguas Residuales
7.
Phys Rev Lett ; 126(25): 250502, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34241519

RESUMEN

Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, several demonstrations of TF-QKD have been realized. Nevertheless, those experiments are implemented in the laboratory, and therefore a critical question remains about whether the TF-QKD is feasible in real-world circumstances. Here, by adopting the sending-or-not-sending twin-field QKD (SNS-TF-QKD) with the method of actively odd parity pairing (AOPP), we demonstrate a field-test QKD over 428 km of deployed commercial fiber and two users are physically separated by about 300 km in a straight line. To this end, we explicitly measure the relevant properties of the deployed fiber and develop a carefully designed system with high stability. The secure key rate we achieved breaks the absolute key rate limit of repeaterless QKD. The result provides a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems. Our work bridges the gap of QKD between laboratory demonstrations and practical applications and paves the way for an intercity QKD network with measurement-device-independent security.

8.
Phys Rev Lett ; 124(1): 010502, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976724

RESUMEN

Ensuring the nonentanglement-breaking (non-EB) property of quantum channels is crucial for the effective distribution and storage of quantum states. However, a practical method for direct and accurate certification of the non-EB feature is highly desirable. Here, we propose and verify a realistic source based measurement device independent certification of non-EB channels. Our method is resilient to repercussions on the certification from experimental conditions, such as multiphotons and imperfect state preparation, and can be implemented with an information incomplete set. We achieve good agreement between experimental outcomes and theoretical predictions, which is validated by the expected results of the ideal semiquantum signaling game, and accurately certify the non-EB channels. Furthermore, our approach is highly robust to effects from noise. Therefore, the proposed approach can be expected to play a significant role in the design and evaluation of realistic quantum channels.

9.
Biochem Med (Zagreb) ; 34(2): 021201, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38665869

RESUMEN

[This corrects the article , PMID: 37841773.].

10.
Artículo en Inglés | MEDLINE | ID: mdl-39012268

RESUMEN

The S100 family proteins (S100s) participate in multiple stages of tumorigenesis and are considered to have potential value as biomarkers for detecting and predicting various cancers. But the role of S100s in lung adenocarcinoma (LUAD) prognosis is elusive. Transcriptional data of LUAD patients were retrieved from TCGA, and relevant literature was extensively reviewed to collect S100 genes. Differential gene expression analysis was performed on the LUAD data, followed by intersection analysis between the differentially expressed genes (DEGs) and S100 genes. Unsupervised consensus clustering analysis identified two clusters. Significant variations in overall survival between the two clusters were shown by Kaplan-Meier analysis. DEGs between the two clusters were analyzed using Lasso regression and univariate/multivariate Cox regression analysis, leading to construction of an 11-gene prognostic signature. The signature exhibited stable and accurate predictive capability in TCGA and GEO datasets. Subsequently, we observed distinct immune cell infiltration, immunotherapy response, and tumor mutation characteristics in high and low-risk groups. Finally, small molecular compounds targeting prognostic genes were screened using CellMiner database, and molecular docking confirmed the binding of AMG-176, Estramustine, and TAK-632 with prognostic genes. In conclusion, we generated a prognostic signature with robust and reliable predictive ability, which may provide guidance for prognosis and treatment of LUAD.

11.
Hum Cell ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995503

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a condition that causes considerable pain and discomfort for patients, and its pathogenic mechanisms are not yet fully understood. While there have been many studies that suggest multiple factors may contribute to its development, current treatments involve both surgical and nonsurgical options. However, there is still much room for improvement in these treatment methods, particularly when it comes to preventing postoperative complications and optimizing surgical procedures. Nanomaterials, as a type of small molecule material, have shown great promise in treating bone tissue diseases, including ONFH. In fact, several nanocomposite materials have demonstrated specific effects in preventing ONFH, promoting bone tissue repair and growth, and optimizing surgical treatment. This article provides a comprehensive overview of current treatments for ONFH, including their advantages and limitations, and reviews the latest advances in nanomaterials for treating this condition. Additionally, this article explores the therapeutic mechanisms involved in using nanomaterials to treat ONFH and to identify new methods and ideas for improving outcomes for patients.

12.
Clin Rheumatol ; 43(1): 453-464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37608136

RESUMEN

INTRODUCTION: Osteoarthritis (OA) is a common degenerative disease of joints, which can appear in almost any joint of the body. Therefore, the widespread occurrence of this disease has a huge impact on the lives of patients around the world. As an important part of metabolism, lipid metabolism is closely related to the occurrence and development of osteoarthritis. METHOD: We screened UGCG and KLF4 based on weighted co-expression network analysis (WGCNA) and SVM-REF analysis. The data from Gene Expression Omnibus (GEO) and single-cell data verified the expression of these two genes. We analyzed KLF4-related genes and established a diagnosis model of OA related to lipid metabolism through the least absolute shrinkage and selection operator (LASSO) analysis. RT-PCR was used to verify the expression of KLF4 in osteoarthritis. RESULTS: Ten important lipid metabolism related genes (LMRGs) in OA were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that they are involve in the formation of immune microenvironment in osteoarthritis. CIBERSORT analysis revealed that there were significant differences in the immune microenvironment between osteoarthritis patients and normal controls. RT-PCR results showed that the expression of KLF4 in OA samples was lower than that in normal samples. The diagnostic model can be used to diagnose OA patients well. CONCLUSIONS: Overall, we demonstrated the potential relationship between the abnormal lipid metabolism and the pathological process of OA. Finally, we identified KLF4 as our significant LMRG and constructed a KLF4-related scoring model to accurately diagnose OA. In conclusion, therapy strategies targeting on regulating lipid metabolism may become a key factor in treating OA. Key Points (a) We identified the significant LMRG KLF4 and constructed a novel KLF4-related scoring model for the accuracy diagnosis of OA. (b) The potential relationship between lipid metabolism and the immune microenvironment in OA was demonstrated in our research. (c) The relationship of lipid metabolism and OA has been further improved in our research and provided novel insight for the diagnosis and therapy for OA patients.


Asunto(s)
Metabolismo de los Lípidos , Osteoartritis , Humanos , Metabolismo de los Lípidos/genética , Osteoartritis/genética
13.
Food Funct ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078275

RESUMEN

PERK/CHOP pathway-mediated excessive endoplasmic reticulum (ER) stress is closely linked to aging-related cognitive impairment (ARCD). Zerumbone (ZB), a naturally occurring sesquiterpene molecule obtained from dietary bitter ginger, has garnered significant interest due to its diverse range of biological properties. It is unclear, though, if ZB can reduce ARCD by preventing ER stress that is dependent on the PERK/CHOP pathway. Here, the PERK-CHOP ER stress pathway was the main focus of an evaluation of the effects and mechanisms of ZB for attenuating ARCD in D-galactose (D-gal)-induced aging mice and SH-SY5Y cells. According to our findings, ZB not only greatly decreased neuronal impairment both in vitro and in vivo, but also significantly alleviated learning and memory failure in vivo. ZB significantly reduced the activation of the PERK/CHOP pathway and neuronal apoptosis in vitro and in vivo, exhibiting the down-regulation of GRP78, p-PREK/PERK, and CHOP expression levels, in addition to suppressing oxidative damage (MDA drop and SOD rise). Comparable outcomes were noted in SH-SY5Y cells subjected to severe ER stress caused by TM. On the other hand, 4-PBA, an ER stress inhibitor, considerably reversed these modifications. Remarkably, CCT020312 (a PERK activator) dramatically overrode the inhibitory effects of ZB on the PERK/CHOP pathway and neuronal death in D-gal-induced SH-SY5Y cells. In contrast, GSK2606414 (a PERK inhibitor) significantly increased these effects of ZB. In summary, our results suggested that ZB prevented D-gal-induced cognitive deficits by blocking the PERK/CHOP-dependent ER stress pathway and apoptosis, suggesting that ZB might be a natural sesquiterpene molecule that relieves ARCD.

14.
Heliyon ; 10(2): e24236, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293430

RESUMEN

The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which could promote progression, metastasis, and invasion in some cancers. Still, its function in the tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, which may be related to ITGA3 genomic alterations and methylation modification. In addition, ITGA3 was significantly correlated with the poor or better prognosis of cancer patients, immune-related pathways in hallmark, immune infiltration, and immune checkpoints, revealing a biological function of ITGA3 in the tumor progression, tumor microenvironment, and tumor immunity. We also found that ITGA3 could predict the response to tumor immunotherapy based on cytokine-treated samples and immunotherapy cohorts. ITGA3 may participate in shaping and regulating the tumor microenvironment to affect the tumor immune response, which was a promising immunotherapy response predictive biomarker and potential therapeutic target to work synergistically with cancer immunotherapy to boost the response and efficacy. Finally, potential targeted compound inhibitors and sensitive drugs were screened using databases ConnectivityMap (CMap) and CellMiner, and AutoDock Tools was used for molecular docking.

15.
Leukemia ; 38(5): 1003-1018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402368

RESUMEN

Iron metabolism plays a crucial role in cell viability, but its relationship with adult stem cells and cancer stem cells is not fully understood. The ferritin complex, responsible for intracellular iron storage, is important in this process. We report that conditional deletion of ferritin heavy chain 1 (Fth1) in the hematopoietic system reduced the number and repopulation capacity of hematopoietic stem cells (HSCs). These effects were associated with a decrease in cellular iron level, leading to impaired mitochondrial function and the initiation of apoptosis. Iron supplementation, antioxidant, and apoptosis inhibitors reversed the reduced cell viability of Fth1-deleted hematopoietic stem and progenitor cells (HSPCs). Importantly, leukemic stem cells (LSCs) derived from MLL-AF9-induced acute myeloid leukemia (AML) mice exhibited reduced Fth1 expression, rendering them more susceptible to apoptosis induced by the iron chelation compared to normal HSPCs. Modulating FTH1 expression using mono-methyl fumarate increased LSCs resistance to iron chelator-induced apoptosis. Additionally, iron supplementation, antioxidant, and apoptosis inhibitors protected LSCs from iron chelator-induced cell death. Fth1 deletion also extended the survival of AML mice. These findings unveil a novel mechanism by which ferritin-mediated iron homeostasis regulates the survival of both HSCs and LSCs, suggesting potential therapeutic strategies for blood cancer with iron dysregulation.


Asunto(s)
Apoptosis , Células Madre Hematopoyéticas , Homeostasis , Hierro , Leucemia Mieloide Aguda , Mitocondrias , Células Madre Neoplásicas , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Ratones , Hierro/metabolismo , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Ferritinas/metabolismo , Supervivencia Celular , Humanos , Ratones Endogámicos C57BL
16.
Biochem Med (Zagreb) ; 33(3): 030703, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37841773

RESUMEN

Introduction: The focus of this meta-analysis was how vitamin D supplementation influences exacerbations in patients with chronic obstructive pulmonary disease (COPD) and vitamin D deficiency (VDD). Materials and methods: Cochrane Library, Web of Science, Embase, and PubMed databases have been systematically searched in an attempt to collect randomized controlled trials related to vitamin D supplementation in COPD patients with VDD published in English available by July 2022. Primary outcome indicators included the mean number of exacerbation and rate of exacerbation. Secondary outcome indicators included forced expiratory volume in the first second (FEV1), FEV1/forced vital capacity (FVC) ratio, and serum 25-hydroxyvitamin D (25(OH)D) concentration. Results: Five studies involving 522 COPD patients with VDD (defined as 25(OH)D < 50 nmol/L) were included, among them 61 were severely deficient in vitamin D (25(OH)D < 25 nmol/L). The results showed that vitamin D supplementation did not decrease the mean number of exacerbation (standardized mean difference (SMD): - 0.10, 95% CI: - 0.29 to 0.09) and the rate of exacerbation (relative risk (RR): 0.89, 95% CI: 0.76 to 1.04, P = 0.179). Also, its effect on FEV1 (SMD: - 0.06, 95% CI: - 0.30 to 0.17) and FEV1/FVC (SMD: -0.10, 95% CI: - 0.48 to 0.27) remained negligible. However, it could increase the serum 25(OH)D concentration (SMD: 2.44, 95 CI%: 2.20 to 2.68, P < 0.001). Conclusions: The effects of vitamin D supplementation on decreasing exacerbation and improving pulmonary function were not significant.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de Vitamina D , Humanos , Suplementos Dietéticos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Vitamina D , Pulmón , Deficiencia de Vitamina D/tratamiento farmacológico
17.
Artículo en Inglés | MEDLINE | ID: mdl-37963004

RESUMEN

Wearable sensors provide a more effective means of activity monitoring and management by recording patients' daily activity data for assessing their daily function and rehabilitation progress, as well as providing a convenient and practical solution for human activity recognition (HAR). However, during the motor rehabilitation of stroke patients, sensors provide vast amounts of high-dimensional data that are large and complex. To enhance the accuracy of activity monitoring and identification, as well as address the limitations of real-time processing, data visualization, and tracking in conventional monitoring approaches, it is essential to perform valid data processing and analysis. This paper combines deep learning models to explore the potential relationships and patterns between data to build an intelligent post-stroke rehabilitation system. This paper proposes a novel framework aimed at accurately recognizing activities performed by stroke patients. Our approach leverages a data fusion mechanism based on multiple sensors to construct a fusion tensor and employs a bidirectional long and short-term memory (BiLSTM) network enhanced with an attention mechanism. This network effectively captures temporal patterns and long-term dependencies within the data, resulting in improved performance for wearable sensor-based activity classification. Furthermore, we introduce an enhanced loss function to optimize the learning process. To assess the performance of the proposed model algorithm, two benchmark datasets were employed. These datasets served as the basis for evaluating and comparing the baseline method as well as other proposed methods. The experimental results clearly demonstrated that the proposed model outperformed the compared methods, indicating its superior performance in activity recognition.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37022411

RESUMEN

Motor Imagery (MI) based on Electroencephalography (EEG), a typical Brain-Computer Interface (BCI) paradigm, can communicate with external devices according to the brain's intentions. Convolutional Neural Networks (CNN) are gradually used for EEG classification tasks and have achieved satisfactory performance. However, most CNN-based methods employ a single convolution mode and a convolution kernel size, which cannot extract multi-scale advanced temporal and spatial features efficiently. What's more, they hinder the further improvement of the classification accuracy of MI-EEG signals. This paper proposes a novel Multi-Scale Hybrid Convolutional Neural Network (MSHCNN) for MI-EEG signal decoding to improve classification performance. The two-dimensional convolution is used to extract temporal and spatial features of EEG signals and the one-dimensional convolution is used to extract advanced temporal features of EEG signals. In addition, a channel coding method is proposed to improve the expression capacity of the spatiotemporal characteristics of EEG signals. We evaluate the performance of the proposed method on the dataset collected in the laboratory and BCI competition IV 2b, 2a, and the average accuracy is at 96.87%, 85.25%, and 84.86%, respectively. Compared with other advanced methods, our proposed method achieves higher classification accuracy. Then we use the proposed method for an online experiment and design an intelligent artificial limb control system. The proposed method effectively extracts EEG signals' advanced temporal and spatial features. Additionally, we design an online recognition system, which contributes to the further development of the BCI system.

19.
Front Bioeng Biotechnol ; 11: 917328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324415

RESUMEN

Introduction: The decoding of the motor imaging electroencephalogram (MI-EEG) is the most critical part of the brain-computer interface (BCI) system. However, the inherent complexity of EEG signals makes it challenging to analyze and model them. Methods: In order to effectively extract and classify the features of EEG signals, a classification algorithm of motor imagery EEG signals based on dynamic pruning equal-variant group convolutional network is proposed. Group convolutional networks can learn powerful representations based on symmetric patterns, but they lack clear methods to learn meaningful relationships between them. The dynamic pruning equivariant group convolution proposed in this paper is used to enhance meaningful symmetric combinations and suppress unreasonable and misleading symmetric combinations. At the same time, a new dynamic pruning method is proposed to dynamically evaluate the importance of parameters, which can restore the pruned connections. Results and Discussion: The experimental results show that the pruning group equivariant convolution network is superior to the traditional benchmark method in the benchmark motor imagery EEG data set. This research can also be transferred to other research areas.

20.
Hum Cell ; 36(6): 1887-1900, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37603220

RESUMEN

With the increasingly prominent problem of population aging, osteoarthritis (OA), which is closely related to aging, has become a serious illness affecting the lives and health of elderly individuals. However, effective treatments are still lacking. OA is typically considered a low-grade inflammatory state. The inflammatory infiltration of macrophages, neutrophils, T cells, and other cells is common in diseased joints. These cells create the inflammatory environment of OA and are involved in the onset and progression of the disease. Exosomes, a type of complex vesicle containing abundant RNA molecules and proteins, play a crucial role in the physiological and pathological processes of an organism. In comparison to other therapeutic methods such as stem cells, exosomes have distinct advantages of precise targeting and low immunogenicity. Moreover, research and techniques related to exosomes are more mature, indicating a promising future in disease treatment. Many studies have shown that the impact of exosomes on the inflammatory microenvironment directly or indirectly leads to the occurrence of various diseases. Furthermore, exosomes can be helpful in the management of illnesses. This article provides a comprehensive review and update on the research of exosomes, a type of extracellular vesicle, in the treatment of OA by modulating the inflammatory microenvironment. It also combines innovative studies on the modification of exosomes. In general, the application of exosomes in the treatment of OA has been validated, and the introduction of modified exosome technology holds potential for enhancing its therapeutic efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA