Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nature ; 617(7961): 629-636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138085

RESUMEN

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Asunto(s)
Oxígeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Agua/química , Agua/metabolismo , Manganeso/química , Manganeso/metabolismo , Calcio/química , Calcio/metabolismo , Peróxidos/metabolismo
3.
Photosynth Res ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488943

RESUMEN

The influence of poly(ethylene glycol) (PEG) polymers H-(O-CH2-CH2)p-OH with different average molecular sizes p on the micelle formation of n-alkyl-ß-D-maltoside detergents with the number of carbon atoms in the alkyl chain ranging from 10 to 12 is investigated with the aim to learn more about the detergent behavior under conditions suitable for the crystallization of the photosynthetic pigment-protein complex photosystem II. PEG is shown to increase the critical micelle concentration (CMC) of all three detergents in the crystallization buffer in a way that the free energy of micelle formation increases linearly with the concentration of oxyethylene units (O-CH2-CH2) irrespective of the actual molecular weight of the polymer. The CMC shift is modeled by assuming for simplicity that it is dominated by the interaction between PEG and detergent monomers and is interpreted in terms of an increase of the transfer free energy of a methylene group of the alkyl chain by 0.2 kJ mol-1 per 1 mol L-1 increase of the concentration of oxyethylene units at 298 K. Implications of this effect for the solubilization and crystallization of protein-detergent complexes as well as detergent extraction from crystals are discussed.

4.
Nature ; 563(7731): 421-425, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405241

RESUMEN

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis , Agua/química , Agua/metabolismo , Calcio/metabolismo , Cristalografía por Rayos X , Cianobacterias/química , Rayos Láser , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/metabolismo
5.
Photosynth Res ; 158(2): 91-107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37266800

RESUMEN

One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).


Asunto(s)
Complejo de Proteína del Fotosistema II , Protones , Complejo de Proteína del Fotosistema II/metabolismo , Agua/metabolismo , Microscopía por Crioelectrón , Oxidación-Reducción
6.
Proc Natl Acad Sci U S A ; 117(1): 141-145, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31848244

RESUMEN

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.


Asunto(s)
Manganeso/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Cianobacterias , Espectroscopía de Resonancia por Spin del Electrón/métodos , Rayos Láser , Luz , Compuestos de Manganeso , Modelos Químicos , Oxidación-Reducción , Óxidos , Complejo de Proteína del Fotosistema II/química , Thermosynechococcus , Agua/química
7.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434915

RESUMEN

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hidrógeno/metabolismo , Magnesio/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotones , Complejo de Proteína del Fotosistema II/química , Quinonas/metabolismo , Agua/metabolismo
8.
Chembiochem ; 21(11): 1597-1604, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930693

RESUMEN

Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/química , Protones , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Thermosynechococcus/enzimología , Thermosynechococcus/genética , Agua/química , Agua/metabolismo
9.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28250468

RESUMEN

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Asunto(s)
Cristalografía por Rayos X/métodos , Rayos Láser , Acústica , Complejo de Proteína del Fotosistema II/química , Fitocromo/química , Ribonucleótido Reductasas/química , Espectrometría por Rayos X/métodos
10.
J Biol Chem ; 293(23): 9090-9100, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695502

RESUMEN

The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Citocromos c6/metabolismo , Citocromos c/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Animales , Proteínas Bacterianas/química , Sitios de Unión , Cianobacterias/química , Citocromos c/química , Citocromos c6/química , Caballos , Simulación del Acoplamiento Molecular , Concentración Osmolar , Complejo de Proteína del Fotosistema I/química , Electricidad Estática
11.
Nat Methods ; 13(1): 59-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619013

RESUMEN

We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).


Asunto(s)
Cristalografía/métodos , Complejo de Proteína del Fotosistema II/metabolismo , Ribosomas/metabolismo , Modelos Moleculares
12.
Physiol Plant ; 166(1): 60-72, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30793319

RESUMEN

In nature, an oxo-bridged Mn4 CaO5 cluster embedded in photosystem II (PSII), a membrane-bound multi-subunit pigment protein complex, catalyzes the water oxidation reaction that is driven by light-induced charge separations in the reaction center of PSII. The Mn4 CaO5 cluster accumulates four oxidizing equivalents to enable the four-electron four-proton catalysis of two water molecules to one dioxygen molecule and cycles through five intermediate S-states, S0  - S4 in the Kok cycle. One important question related to the catalytic mechanism of the oxygen-evolving complex (OEC) that remains is, whether structural isomers are present in some of the intermediate S-states and if such equilibria are essential for the mechanism of the O-O bond formation. Here we compare results from electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) obtained at cryogenic temperatures for the S2 state of PSII with structural data collected of the S1 , S2 and S3 states by serial crystallography at neutral pH (∼6.5) using an X-ray free electron laser at room temperature. While the cryogenic data show the presence of at least two structural forms of the S2 state, the room temperature crystallography data can be well-described by just one S2 structure. We discuss the deviating results and outline experimental strategies for clarifying this mechanistically important question.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Cristalografía , Espectroscopía de Resonancia por Spin del Electrón , Temperatura , Espectroscopía de Absorción de Rayos X
13.
Phys Chem Chem Phys ; 21(45): 25449-25466, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31713551

RESUMEN

Proton-transfer proteins are often exposed to the bulk clusters of carboxylate groups that might bind protons transiently. This raises important questions as to how the carboxylate groups of a protonated cluster interact with each other and with water, and how charged protein groups and hydrogen-bonded waters could have an impact on proton transfers at the cluster. We address these questions by combining classical mechanical and quantum mechanical computations with the analysis of cyanobacterial photosystem II crystal structures from Thermosynechococcus elongatus. The model system we use consists of an interface between PsbO and PsbU, which are two extrinsic proteins of photosystem II. We find that a protonated carboxylate pair of PsbO is part of a dynamic network of protein-water hydrogen bonds which extends across the protein interface. Hydrogen-bonded waters and a conserved lysine sidechain largely shape the energetics of proton transfer at the carboxylate cluster.

15.
Angew Chem Int Ed Engl ; 58(3): 801-805, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30452104

RESUMEN

A biohybrid photobioanode mimicking the Z-scheme has been developed by functional integration of photosystem II (PSII) and PbS quantum dots (QDs) within an inverse opal TiO2 architecture giving rise to a rather negative water oxidation potential of about -0.55 V vs. Ag/AgCl, 1 m KCl at neutral pH. The electrical linkage between both light-sensitive entities has been established through an Os-complex-modified redox polymer (POs ), which allows the formation of a multi-step electron-transfer chain under illumination starting with the photo-activated water oxidation at PSII followed by an electron transfer from PSII through POs to the photo-excited QDs and finally to the TiO2 electrode. The photobioanode was coupled to a novel, transparent, inverse-opal ATO cathode modified with an O2 -reducing bilirubin oxidase for the construction of a H2 O/O2 photobioelectrochemical cell reaching a high open-circuit voltage of about 1 V under illumination.


Asunto(s)
Plomo/química , Complejo de Proteína del Fotosistema II/química , Puntos Cuánticos/química , Sulfuros/química , Agua/química , Fuentes de Energía Bioeléctrica , Materiales Biomiméticos/química , Electricidad , Electrodos , Transporte de Electrón , Modelos Moleculares , Oxidación-Reducción
16.
J Am Chem Soc ; 139(46): 16478-16481, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29091736

RESUMEN

Artificial light-driven signal chains are particularly important for the development of systems converting light into a current, into chemicals or for light-induced sensing. Here, we report on the construction of an all-protein, light-triggered, catalytic circuit based on photosystem I, cytochrome c (cyt c) and human sulfite oxidase (hSOX). The defined assembly of all components using a modular design results in an artificial biohybrid electrode architecture, combining the photophysical features of PSI with the biocatalytic properties of hSOX for advanced light-controlled bioelectronics. The working principle is based on a competitive switch between electron supply from the electrode or by enzymatic substrate conversion.


Asunto(s)
Biotecnología , Citocromos c/metabolismo , Técnicas Electroquímicas , Complejo de Proteína del Fotosistema I/metabolismo , Sulfito-Oxidasa/metabolismo , Biocatálisis , Citocromos c/química , Electrodos , Humanos , Luz , Complejo de Proteína del Fotosistema I/química , Sulfito-Oxidasa/química
17.
Nat Methods ; 11(5): 545-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633409

RESUMEN

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.


Asunto(s)
Rayos Láser , Sustancias Macromoleculares/química , Bacillus/enzimología , Calcio/química , Calibración , Simulación por Computador , Cristalización , Cristalografía por Rayos X , Electrones , Diseño de Equipo , Funciones de Verosimilitud , Modelos Químicos , Conformación Molecular , Muramidasa/química , Nanotecnología , Reproducibilidad de los Resultados , Programas Informáticos , Termolisina/química , Rayos X , Zinc/química
18.
Photosynth Res ; 133(1-3): 163-173, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28258466

RESUMEN

The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-ß-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.


Asunto(s)
Proteínas Bacterianas/química , Complejo de Proteína del Fotosistema I/química , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Synechococcus/metabolismo , Difracción de Rayos X , Detergentes/química , Modelos Moleculares , Complejo de Proteína del Fotosistema I/metabolismo , Soluciones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Phys Chem Chem Phys ; 19(20): 13189-13194, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28489091

RESUMEN

The fluorescence of monomeric photosystem II core complexes (mPSIIcc) of the cyanobacterium Thermosynechococcus elongatus, originating from redissolved crystals, is investigated by using single-molecule spectroscopy (SMS) at 1.6 K. The emission spectra of individual mPSIIcc are dominated by sharp zero-phonon lines, showing the existence of different emitters compatible with the F685, F689, and F695 bands reported formerly. The intensity of F695 is reduced in single mPSIIcc as compared to single PSIIcc-dimers (dPSIIcc). Crystal structures show that one of the ß-carotene (ß-Car) cofactors located at the monomer-monomer interface in dPSIIcc is missing in mPSIIcc. This ß-Car in dPSIIcc is in van der Waals distance to chlorophyll (Chl) 17 in the CP47 subunit. We suggest that this Chl contributes to the F695 emitter. A loss of ß-Car cofactors in mPSIIcc preparations will lead to an increased lifetime of the triplet state of Chl 17, which can explain the reduced singlet emission of F695 as observed in SMS.


Asunto(s)
Carotenoides/química , Complejo de Proteína del Fotosistema II/química , Clorofila/química , Cianobacterias/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Espectrometría de Fluorescencia , beta Caroteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA