Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 65(10): 1687-1700, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35871651

RESUMEN

AIMS/HYPOTHESIS: The islet vasculature, including its constituent islet endothelial cells, is a key contributor to the microenvironment necessary for normal beta cell health and function. In type 2 diabetes, islet amyloid polypeptide (IAPP) aggregates, forming amyloid deposits that accumulate between beta cells and islet capillaries. This process is known to be toxic to beta cells but its impact on the islet vasculature has not previously been studied. Here, we report the first characterisation of the effects of IAPP aggregation on islet endothelial cells/capillaries using cell-based and animal models. METHODS: Primary and immortalised islet endothelial cells were treated with amyloidogenic human IAPP (hIAPP) alone or in the presence of the amyloid blocker Congo Red or the Toll-like receptor (TLR) 2/4 antagonist OxPAPc. Cell viability was determined0 along with mRNA and protein levels of inflammatory markers. Islet capillary abundance, morphology and pericyte coverage were determined in pancreases from transgenic mice with beta cell expression of hIAPP using conventional and confocal microscopy. RESULTS: Aggregated hIAPP decreased endothelial cell viability in immortalised and primary islet endothelial cells (by 78% and 60%, respectively) and significantly increased expression of inflammatory markers Il6, Vcam1 and Edn1 mRNA relative to vehicle treatment in both cell types (p<0.05; n=4). Both cytotoxicity and the proinflammatory response were ameliorated by Congo Red (p<0.05; n=4); whereas TLR2/4-inhibition blocked inflammatory gene expression (p<0.05; n=6) without improving viability. Islets from high-fat-diet-fed amyloid-laden hIAPP transgenic mice also exhibited significantly increased expression of most markers of endothelial inflammation (p<0.05; n=5) along with decreased capillary density compared with non-transgenic littermates fed the same diet (p<0.01). Moreover, a 16% increase in capillary diameter was observed in amyloid-adjacent capillaries (p<0.01), accompanied by a doubling in pericyte structures positive for neuron-glial antigen 2 (p<0.001). CONCLUSIONS/INTERPRETATION: Islet endothelial cells are susceptible to hIAPP-induced cytotoxicity and exhibit a TLR2/4-dependent proinflammatory response to aggregated hIAPP. Additionally, we observed amyloid-selective effects that decreased islet capillary density, accompanied by increased capillary diameter and increased pericyte number. Together, these data demonstrate that the islet vasculature is a target of the cytotoxic and proinflammatory effects of aggregated hIAPP that likely contribute to the detrimental effects of hIAPP aggregation on beta cell function and survival in type 2 diabetes.


Asunto(s)
Amiloidosis , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Rojo Congo/metabolismo , Rojo Congo/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , ARN Mensajero/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
2.
Am J Physiol Endocrinol Metab ; 322(3): E307-E318, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128957

RESUMEN

Type 2 diabetes is associated with the upregulation of neprilysin, a peptidase capable of cleaving glucoregulatory peptides such as glucagon-like peptide-1 (GLP-1). In humans, use of the neprilysin inhibitor sacubitril in combination with an angiotensin II receptor blocker was associated with increased plasma GLP-1 levels and improved glycemic control. Whether neprilysin inhibition per se is mediating these effects remains unknown. We sought to determine whether pharmacological neprilysin inhibition on its own confers beneficial effects on glycemic status and ß-cell function in a mouse model of reduced insulin secretion, and whether any such effects are dependent on GLP-1 receptor (GLP-1R) signaling. High-fat-fed male wild-type (Glp1r+/+) and GLP-1R knockout (Glp1r-/-) mice were treated with low-dose streptozotocin (STZ) to recapitulate type 2 diabetes-associated ß-cell dysfunction, or vehicle as control. Mice were continued on high-fat diet alone or supplemented with the neprilysin inhibitor sacubitril for 8 wk. At the end of the study period, ß-cell function was assessed by oral or intravenous glucose-tolerance test. Fasting and fed glucose were significantly lower in wild-type mice treated with sacubitril, although active GLP-1 levels and insulin secretion during oral glucose challenge were unchanged. In contrast, insulin secretion in response to intravenous glucose was significantly enhanced in sacubitril-treated wild-type mice, and this effect was blunted in Glp1r-/- mice. Similarly, sacubitril enhanced insulin secretion in vitro in islets from STZ-treated Glp1r+/+ but not Glp1r-/- mice. Together, our data suggest the insulinotropic effects of pharmacological neprilysin inhibition in a mouse model of ß-cell dysfunction are mediated via intra-islet GLP-1R signaling.NEW & NOTEWORTHY The neprilysin inhibitor, sacubitril, improves glycemic status in a mouse model of reduced insulin secretion. Sacubitril enhances intravenous but not oral glucose-mediated insulin secretion. The increased glucose-mediated insulin secretion is GLP-1 receptor-dependent. Neprilysin inhibition does not raise postprandial circulating active GLP-1 levels.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Secreción de Insulina , Neprilisina , Aminobutiratos , Animales , Compuestos de Bifenilo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo
3.
Diabetologia ; 63(11): 2385-2395, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32728889

RESUMEN

AIMS/HYPOTHESIS: Aggregation of the beta cell secretory product human islet amyloid polypeptide (hIAPP) results in islet amyloid deposition, a pathological feature of type 2 diabetes. Amyloid formation is associated with increased levels of islet IL-1ß as well as beta cell dysfunction and death, but the mechanisms that promote amyloid deposition in situ remain unclear. We hypothesised that physiologically relevant concentrations of IL-1ß stimulate beta cell islet amyloid polypeptide (IAPP) release and promote amyloid formation. METHODS: We used a humanised mouse model of endogenous beta cell hIAPP expression to examine whether low (pg/ml) concentrations of IL-1ß promote islet amyloid formation in vitro. Amyloid-forming islets were cultured for 48 h in the presence or absence of IL-1ß with or without an IL-1ß neutralising antibody. Islet morphology was assessed by immunohistochemistry and islet mRNA expression, hormone content and release were also quantified. Cell-free thioflavin T assays were used to monitor hIAPP aggregation kinetics in the presence and absence of IL-1ß. RESULTS: Treatment with a low concentration of IL-1ß (4 pg/ml) for 48 h increased islet amyloid prevalence (93.52 ± 3.89% vs 43.83 ± 9.67% amyloid-containing islets) and amyloid severity (4.45 ± 0.82% vs 2.16 ± 0.50% amyloid area/islet area) in hIAPP-expressing mouse islets in vitro. This effect of IL-1ß was reduced when hIAPP-expressing islets were co-treated with an IL-1ß neutralising antibody. Cell-free hIAPP aggregation assays showed no effect of IL-1ß on hIAPP aggregation in vitro. Low concentration IL-1ß did not increase markers of the unfolded protein response (Atf4, Ddit3) or alter proIAPP processing enzyme gene expression (Pcsk1, Pcsk2, Cpe) in hIAPP-expressing islets. However, release of IAPP and insulin were increased over 48 h in IL-1ß-treated vs control islets (IAPP 0.409 ± 0.082 vs 0.165 ± 0.051 pmol/5 islets; insulin 87.5 ± 8.81 vs 48.3 ± 17.3 pmol/5 islets), and this effect was blocked by co-treatment with IL-1ß neutralising antibody. CONCLUSIONS/INTERPRETATION: Under amyloidogenic conditions, physiologically relevant levels of IL-1ß promote islet amyloid formation by increasing beta cell release of IAPP. Neutralisation of this effect of IL-1ß may decrease the deleterious effects of islet amyloid formation on beta cell function and survival.


Asunto(s)
Interleucina-1beta/farmacología , Amiloidosis/tratamiento farmacológico , Animales , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones
4.
Diabetologia ; 62(7): 1113-1122, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31089754

RESUMEN

Neprilysin is a widely expressed peptidase with broad substrate specificity that preferentially hydrolyses oligopeptide substrates, many of which regulate the cardiovascular, nervous and immune systems. Emerging evidence suggests that neprilysin also hydrolyses peptides that play an important role in glucose metabolism. In recent studies in humans, a dual angiotensin receptor-neprilysin inhibitor (ARNi) improved glycaemic control and insulin sensitivity in individuals with type 2 diabetes and/or obesity. Moreover, preclinical studies have also reported that neprilysin inhibition, alone or in combination with renin-angiotensin system blockers, elicits beneficial effects on glucose homeostasis. Since neprilysin inhibitors have been approved for the treatment of heart failure, their repurposing for treating type 2 diabetes would provide a novel therapeutic strategy. In this review, we evaluate existing evidence from preclinical and clinical studies in which neprilysin is deleted/inhibited, we highlight potential mechanisms underlying the beneficial glycaemic effects of neprilysin inhibition, and discuss possible deleterious effects that may limit the efficacy and safety of neprilysin inhibitors in the clinic. We also review the favourable impact neprilysin inhibition can have on diabetic complications, in addition to glucose control. Finally, we conclude that neprilysin inhibitors may be a useful therapeutic option for treating type 2 diabetes; however, their combination with angiotensin II receptor blockers is needed to circumvent deleterious consequences of neprilysin inhibition alone.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo , Antagonistas de Receptores de Angiotensina/uso terapéutico , Animales , Antihipertensivos/uso terapéutico , Antineoplásicos/uso terapéutico , Glucemia/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos , Sistema Renina-Angiotensina/efectos de los fármacos
5.
Diabetologia ; 60(4): 701-708, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27933334

RESUMEN

AIM/HYPOTHESIS: Neprilysin, a widely expressed peptidase, is upregulated in metabolically altered states such as obesity and type 2 diabetes. Like dipeptidyl peptidase-4 (DPP-4), neprilysin can degrade and inactivate the insulinotropic peptide glucagon-like peptide-1 (GLP-1). Thus, we investigated whether neprilysin deficiency enhances active GLP-1 levels and improves glycaemia in a mouse model of high fat feeding. METHODS: Nep +/+ and Nep -/- mice were fed a 60% fat diet for 16 weeks, after which active GLP-1 and DPP-4 activity levels were measured, as were glucose, insulin and C-peptide levels during an OGTT. Insulin sensitivity was assessed using an insulin tolerance test. RESULTS: High-fat-fed Nep -/- mice exhibited elevated active GLP-1 levels (5.8 ± 1.1 vs 3.5 ± 0.8 pmol/l, p < 0.05) in association with improved glucose tolerance, insulin sensitivity and beta cell function compared with high-fat-fed Nep +/+ mice. In addition, plasma DPP-4 activity was lower in high-fat-fed Nep -/- mice (7.4 ± 1.0 vs 10.7 ± 1.3 nmol ml-1 min-1, p < 0.05). No difference in insulin:C-peptide ratio was observed between Nep -/- and Nep +/+ mice, suggesting that improved glycaemia does not result from changes in insulin clearance. CONCLUSIONS/INTERPRETATION: Under conditions of increased dietary fat, an improved glycaemic status in neprilysin-deficient mice is associated with elevated active GLP-1 levels, reduced plasma DPP-4 activity and improved beta cell function. Thus, neprilysin inhibition may be a novel treatment strategy for type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Neprilisina/deficiencia , Neprilisina/metabolismo , Análisis de Varianza , Animales , Péptido C/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Masculino , Ratones , Ratones Mutantes
6.
Diabetologia ; 59(10): 2166-71, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27393137

RESUMEN

AIMS/HYPOTHESIS: The S20G human islet amyloid polypeptide (hIAPP) substitution is associated with an earlier onset of type 2 diabetes in humans. Studies of synthetic S20G hIAPP in cell-free systems and immortalised beta cells have suggested that this may be due to increased hIAPP amyloidogenicity and cytotoxicity. Thus, using primary islets from mice with endogenous S20G hIAPP expression, we sought to determine whether the S20G gene mutation leads to increased amyloid-induced toxicity, beta cell loss and reduced beta cell function. METHODS: Islets from mice in which mouse Iapp was replaced with human wild-type or S20G hIAPP were isolated and cultured in vitro under amyloid-forming conditions. Levels of insulin and hIAPP mRNA and protein, amyloid deposition and beta cell apoptosis and area, as well as glucose-stimulated insulin and hIAPP secretion, were quantified. RESULTS: Islets expressing S20G hIAPP cultured in 16.7 mmol/l glucose demonstrated increased amyloid deposition and beta cell apoptosis, reduced beta cell area, decreased insulin content and diminished glucose-stimulated insulin secretion, compared with islets expressing wild-type hIAPP. Amyloid deposition and beta cell apoptosis were also increased when S20G islets were cultured in 11.1 mmol/l glucose (the concentration that is thought to be physiological for mouse islets). CONCLUSIONS/INTERPRETATION: S20G hIAPP reduces beta cell number and function, thereby possibly explaining the earlier onset of type 2 diabetes in individuals carrying this gene mutation.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Amiloide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Femenino , Glucosa/farmacología , Humanos , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética
7.
J Biol Chem ; 290(51): 30475-85, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26483547

RESUMEN

Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased ß-cell apoptosis and reduced ß-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting ß-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with ß cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and ß-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit ß-cell loss in type 2 diabetes.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/enzimología , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Células Secretoras de Insulina/patología , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Transgénicos
8.
Br J Cardiol ; 27(4): 109-111, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33795925
9.
Diabetologia ; 57(9): 1884-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24965964

RESUMEN

AIMS/HYPOTHESIS: Amyloid deposition and inflammation are characteristic of islet pathology in type 2 diabetes. The aim of this study was to determine whether islet amyloid formation is required for the development of islet inflammation in vivo. METHODS: Human islet amyloid polypeptide transgenic mice and non-transgenic littermates (the latter incapable of forming islet amyloid) were fed a low-fat (10%) or high-fat (60%) diet for 12 months; high-fat feeding induces islet amyloid formation in transgenic mice. At the conclusion of the study, glycaemia, beta cell function, islet amyloid deposition, markers of islet inflammation and islet macrophage infiltration were measured. RESULTS: Fasting plasma glucose levels did not differ by diet or genotype. Insulin release in response to i.v. glucose was significantly greater in both high vs low fat groups, and significantly lower in both transgenic compared with non-transgenic groups. Only high-fat-fed transgenic mice developed islet amyloid and showed a trend towards reduced beta cell area. Compared with islets from low-fat-fed transgenic or high-fat-fed non-transgenic mice, islets of high-fat-fed transgenic mice displayed a significant increase in the expression of genes encoding chemokines (Ccl2, Cxcl1), macrophage/dendritic cell markers (Emr1, Itgax), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome components (Nlrp3, Pycard, Casp1) and proinflammatory cytokines (Il1b, Tnf, Il6), as well as increased F4/80 staining, consistent with increased islet inflammation and macrophage infiltration. CONCLUSIONS/INTERPRETATION: Our results indicate that islet amyloid formation is required for the induction of islet inflammation in this long-term high-fat-diet model, and thus could promote beta cell dysfunction in type 2 diabetes via islet inflammation.


Asunto(s)
Amiloide/inmunología , Amiloide/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Glucemia/metabolismo , Proteínas de Unión al Calcio , Diabetes Mellitus Tipo 2/sangre , Grasas de la Dieta/efectos adversos , Ayuno/sangre , Genotipo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Mucinas/genética , Mucinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
J Biol Chem ; 288(5): 3553-9, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23229548

RESUMEN

Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to ß-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces ß-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aß, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant ß-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or ß-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and ß-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.


Asunto(s)
Amiloide/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Proteolisis , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Masculino , Espectrometría de Masas , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953181

RESUMEN

Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.


Asunto(s)
Dieta Alta en Grasa , Secreción de Insulina , Insulina , Neprilisina , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Enterocitos/metabolismo , Eliminación de Gen , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neprilisina/genética , Neprilisina/metabolismo
12.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826286

RESUMEN

We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R +/+ mice and GLP-1R null (GLP-1R -/- ) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R +/+ mice by - 1.5±0.6, -1.3±0.4 and -1.9±0.4 grams, respectively ( P <0.05), with similar effects being observed in female GLP-1R +/+ mice. These effects were absent in male and female DIO GLP-1R -/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R +/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R -/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R +/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.

13.
Am J Physiol Endocrinol Metab ; 305(4): E475-84, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23736544

RESUMEN

The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve ß-cell mass. However, sitagliptin also increases ß-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated ß-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing ß-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and ß-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, ß-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced ß-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates ß-cell secretion without increasing amyloid formation and protects against amyloid-induced ß-cell loss. This suggests a novel effect of sitagliptin to protect the ß-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Células Secretoras de Insulina/efectos de los fármacos , Polipéptido Amiloide de los Islotes Pancreáticos/biosíntesis , Placa Amiloide/prevención & control , Pirazinas/uso terapéutico , Triazoles/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Quimioterapia Combinada/efectos adversos , Hemicigoto , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Masculino , Metformina/efectos adversos , Metformina/uso terapéutico , Ratones , Ratones Transgénicos , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/inducido químicamente , Pancreatitis/inducido químicamente , Pirazinas/efectos adversos , Distribución Aleatoria , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fosfato de Sitagliptina , Factores de Tiempo , Triazoles/efectos adversos
14.
Endocrinology ; 164(5)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36964914

RESUMEN

The peptidase neprilysin modulates glucose homeostasis by cleaving and inactivating insulinotropic peptides, including some produced in the intestine such as glucagon-like peptide-1 (GLP-1). Under diabetic conditions, systemic or islet-selective inhibition of neprilysin enhances beta-cell function through GLP-1 receptor (GLP-1R) signaling. While neprilysin is expressed in intestine, its local contribution to modulation of beta-cell function remains unknown. We sought to determine whether acute selective pharmacological inhibition of intestinal neprilysin enhanced glucose-stimulated insulin secretion under physiological conditions, and whether this effect was mediated through GLP-1R. Lean chow-fed Glp1r+/+ and Glp1r-/- mice received a single oral low dose of the neprilysin inhibitor thiorphan or vehicle. To confirm selective intestinal neprilysin inhibition, neprilysin activity in plasma and intestine (ileum and colon) was assessed 40 minutes after thiorphan or vehicle administration. In a separate cohort of mice, an oral glucose tolerance test was performed 30 minutes after thiorphan or vehicle administration to assess glucose-stimulated insulin secretion. Systemic active GLP-1 levels were measured in plasma collected 10 minutes after glucose administration. In both Glp1r+/+ and Glp1r-/- mice, thiorphan inhibited neprilysin activity in ileum and colon without altering plasma neprilysin activity or active GLP-1 levels. Further, thiorphan significantly increased insulin secretion in Glp1r+/+ mice, whereas it did not change insulin secretion in Glp1r-/- mice. In conclusion, under physiological conditions, acute pharmacological inhibition of intestinal neprilysin increases glucose-stimulated insulin secretion in a GLP-1R-dependent manner. Since intestinal neprilysin modulates beta-cell function, strategies to inhibit its activity specifically in the intestine may improve beta-cell dysfunction in type 2 diabetes.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Secreción de Insulina , Neprilisina , Animales , Masculino , Ratones , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Insulina/metabolismo , Intestinos , Ratones Endogámicos C57BL , Neprilisina/genética , Neprilisina/metabolismo , Tiorfan/farmacología
15.
Peptides ; 168: 171076, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572792

RESUMEN

Neprilysin is a peptidase that cleaves glucoregulatory peptides, including glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). Some studies suggest that its inhibition in diabetes and/or obesity improves glycemia, and that this is associated with enhanced insulin secretion, glucose tolerance and insulin sensitivity. Whether reduced neprilysin activity also improves hepatic glucose metabolism has not been explored. We sought to determine whether genetic deletion of neprilysin suppresses hepatic glucose production (HGP) in high fat-fed mice. Nep+/+ and Nep-/- mice were fed high fat diet for 16 weeks, and then underwent a pyruvate tolerance test (PTT) to assess hepatic gluconeogenesis. Since glycogen breakdown in liver can also yield glucose, we assessed liver glycogen content in fasted and fed mice. In Nep-/- mice, glucose excursion during the PTT was reduced when compared to Nep+/+ mice. Further, liver glycogen levels were significantly greater in fasted but not fed Nep-/- versus Nep+/+ mice. Since gut-derived factors modulate HGP, we tested whether gut-selective inhibition of neprilysin could recapitulate the suppression of hepatic gluconeogenesis observed with whole-body inhibition, and this was indeed the case. Finally, the gut-derived neprilysin substrates, GLP-1 and CCK, are well-known to suppress HGP. Having previously demonstrated elevated plasma GLP-1 levels in Nep-/- mice, we now measured plasma CCK bioactivity and reveal an increase in Nep-/- versus Nep+/+ mice, suggesting GLP-1 and/or CCK may play a role in reducing HGP under conditions of neprilysin deficiency. In sum, neprilysin modulates hepatic gluconeogenesis and strategies to inhibit its activity may reduce HGP in type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gluconeogénesis , Ratones , Animales , Gluconeogénesis/genética , Neprilisina , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno Hepático/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Glucemia/metabolismo
16.
Am J Pathol ; 178(6): 2632-40, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21641386

RESUMEN

Amyloid deposition and reduced ß-cell mass are pathological hallmarks of the pancreatic islet in type 2 diabetes; however, whether the extent of amyloid deposition is associated with decreased ß-cell mass is debated. We investigated the possible relationship and, for the first time, determined whether increased islet amyloid and/or decreased ß-cell area quantified on histological sections is correlated with increased ß-cell apoptosis. Formalin-fixed, paraffin-embedded human pancreas sections from subjects with (n = 29) and without (n = 39) diabetes were obtained at autopsy (64 ± 2 and 70 ± 4 islets/subject, respectively). Amyloid and ß cells were visualized by thioflavin S and insulin immunolabeling. Apoptotic ß cells were detected by colabeling for insulin and by TUNEL. Diabetes was associated with increased amyloid deposition, decreased ß-cell area, and increased ß-cell apoptosis, as expected. There was a strong inverse correlation between ß-cell area and amyloid deposition (r = -0.42, P < 0.001). ß-Cell area was selectively reduced in individual amyloid-containing islets from diabetic subjects, compared with control subjects, but amyloid-free islets had ß-cell area equivalent to islets from control subjects. Increased amyloid deposition was associated with ß-cell apoptosis (r = 0.56, P < 0.01). Thus, islet amyloid is associated with decreased ß-cell area and increased ß-cell apoptosis, suggesting that islet amyloid deposition contributes to the decreased ß-cell mass that characterizes type 2 diabetes.


Asunto(s)
Amiloide/metabolismo , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Demografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Diabetes Res Clin Pract ; 191: 110054, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36038088

RESUMEN

SARS-CoV-2 infection is associated with an elevated risk of new-onset diabetes. With infections forecast to rise in the coming months, this may exacerbate an existing public health crisis by increasing rates of diabetes worldwide. Much remains to be learned about a causal link between SARS-CoV-2 and incident diabetes. This is complicated by the rapid evolution of new SARS-CoV-2 variants that may have differential effects on development of diabetes. It is possible that some variants confer an increased risk, while others carry little to no risk. Distinguishing between these possibilities could be key in preventing or screening for new-onset diabetes, and could inform care of at-risk individuals with recent SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Diabetes Mellitus , COVID-19/epidemiología , Diabetes Mellitus/epidemiología , Humanos , SARS-CoV-2
18.
J Mol Endocrinol ; 69(2): R63-R79, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35521990

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Following initial infection of airway epithelia, SARS-CoV-2 invades a wide range of cells in multiple organs, including pancreatic islet cells. Diabetes is now recognised as a risk factor for severe COVID-19 outcomes, including hospitalisation and death. Additionally, COVID-19 is associated with a higher risk of new-onset diabetes and metabolic complications of diabetes. One mechanism by which these deleterious outcomes may occur is via the destruction of insulin-producing islet ß cells, either directly by SARS-CoV-2 entry into ß cells or indirectly due to inflammation and fibrosis in the surrounding microenvironment. While the canonical pathway of viral entry via angiotensin-converting enzyme 2 (ACE2) has been established as a major route of SARS-CoV-2 infection in the lung, it may not be solely responsible for viral entry into the endocrine pancreas. This is likely due to the divergent expression of viral entry factors among different tissues. For example, expression of ACE2 has not been unequivocally demonstrated in ß cells. Thus, it is important to understand how other proteins known to be highly expressed in pancreatic endocrine cells may be involved in SARS-CoV-2 entry, with the view that these could be targeted to prevent the demise of the ß cell in COVID-19. To that end, this review discusses alternate receptors of SARS-CoV-2 (CD147 and GRP78), as well as mediators (furin, TMPRSS2, cathepsin L, ADAM17, neuropilin-1, and heparan sulphate) that may facilitate SARS-CoV-2 entry into pancreatic islets independent of or in conjunction with ACE2.


Asunto(s)
COVID-19 , Diabetes Mellitus , Enzima Convertidora de Angiotensina 2 , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
19.
Front Endocrinol (Lausanne) ; 13: 888867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733766

RESUMEN

Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Neprilisina , Aminobutiratos/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Compuestos de Bifenilo , Peso Corporal , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Ratones , Ratones Endogámicos C57BL , Neprilisina/farmacología , Receptores de Angiotensina , Tetrazoles/farmacología , Valsartán/farmacología
20.
J Biol Chem ; 285(24): 18177-83, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20400513

RESUMEN

Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of beta-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased beta-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and beta-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and beta-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.


Asunto(s)
Amiloide/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Neprilisina/fisiología , Péptidos/química , Animales , Apoptosis , Diabetes Mellitus Experimental/terapia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Neprilisina/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA