Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biophys J ; 122(11): 2176-2191, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36600598

RESUMEN

Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to loss of protein function and ultimately disease. Here, we investigate missense variants in membrane proteins-key drivers in cell signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to understand the underlying molecular processes. A key mechanism underlying pathogenicity in missense variants of soluble proteins has been shown to be loss of stability. Membrane proteins, however, are widely understudied. Here, we interpret variant effects on a larger scale by performing structure-based estimations of changes in thermodynamic stability using a membrane-specific energy function and analyses of sequence conservation during evolution of 15 transmembrane proteins. We find evidence for loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is a driving factor also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mechanistic insights into variant consequences for membrane proteins. To enable broader analyses of disease-related and population variants, we include variant mappings for the entire human proteome.


Asunto(s)
Proteínas de la Membrana , Transducción de Señal , Humanos , Proteínas de la Membrana/genética , Mutación Missense
2.
Gut Microbes ; 16(1): 2350156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726597

RESUMEN

Extensive research has explored the role of gut microbiota in colorectal cancer (CRC). Nonetheless, metatranscriptomic studies investigating the in situ functional implications of host-microbe interactions in CRC are scarce. Therefore, we characterized the influence of CRC core pathogens and biofilms on the tumor microenvironment (TME) in 40 CRC, paired normal, and healthy tissue biopsies using fluorescence in situ hybridization (FISH) and dual-RNA sequencing. FISH revealed that Fusobacterium spp. was associated with increased bacterial biomass and inflammatory response in CRC samples. Dual-RNA sequencing demonstrated increased expression of pro-inflammatory cytokines, defensins, matrix-metalloproteases, and immunomodulatory factors in CRC samples with high bacterial activity. In addition, bacterial activity correlated with the infiltration of several immune cell subtypes, including M2 macrophages and regulatory T-cells in CRC samples. Specifically, Bacteroides fragilis and Fusobacterium nucleatum correlated with the infiltration of neutrophils and CD4+ T-cells, respectively. The collective bacterial activity/biomass appeared to exert a more significant influence on the TME than core pathogens, underscoring the intricate interplay between gut microbiota and CRC. These results emphasize how biofilms and core pathogens shape the immune phenotype and TME in CRC while highlighting the need to extend the bacterial scope beyond CRC pathogens to advance our understanding and identify treatment targets.


Asunto(s)
Biopelículas , Neoplasias Colorrectales , Microbioma Gastrointestinal , Microambiente Tumoral , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Biopelículas/crecimiento & desarrollo , Microambiente Tumoral/inmunología , Masculino , Femenino , Bacterias/clasificación , Bacterias/genética , Bacterias/inmunología , Persona de Mediana Edad , Hibridación Fluorescente in Situ , Anciano , Fusobacterium nucleatum/inmunología , Citocinas/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Fenotipo , Bacteroides fragilis/inmunología , Bacteroides fragilis/fisiología , Bacteroides fragilis/genética
3.
Comput Struct Biotechnol J ; 21: 66-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36514339

RESUMEN

Calculating changes in protein stability (ΔΔG) has been shown to be central for predicting the consequences of single amino acid substitutions in protein engineering as well as interpretation of genomic variants for disease risk. Structure-based calculations are considered most accurate, however the tools used to calculate ΔΔGs have been developed on experimentally resolved structures. Extending those calculations to homology models based on related proteins would greatly extend their applicability as large parts of e.g. the human proteome are not structurally resolved. In this study we aim to investigate the accuracy of ΔΔG values predicted on homology models compared to crystal structures. Specifically, we identified four proteins with a large number of experimentally tested ΔΔGs and templates for homology modeling across a broad range of sequence identities, and selected three methods for ΔΔG calculations to test. We find that ΔΔG-values predicted from homology models compare equally well to experimental ΔΔGs as those predicted on experimentally established crystal structures, as long as the sequence identity of the model template to the target protein is at least 40%. In particular, the Rosetta cartesian_ddg protocol is robust against the small perturbations in the structure which homology modeling introduces. In an independent assessment, we observe a similar trend when using ΔΔGs to categorize variants as low or wild-type-like abundance. Overall, our results show that stability calculations performed on homology models can substitute for those on crystal structures with acceptable accuracy as long as the model is built on a template with sequence identity of at least 40% to the target protein.

4.
Viruses ; 12(9)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957679

RESUMEN

crAss-like viruses are a putative family of bacteriophages recently discovered. The eponym of the clade, crAssphage, is an enteric bacteriophage estimated to be present in at least half of the human population and it constitutes up to 90% of the sequences in some human fecal viral metagenomic datasets. We focused on the evolutionary dynamics of the genes encoded on the crAssphage genome. By investigating the conservation of the genes, a consistent variation in the evolutionary rates across the different functional groups was found. Gene duplications in crAss-like genomes were detected. By exploring the differences among the functional categories of the genes, we confirmed that the genes encoding capsid proteins were the most ubiquitous, despite their overall low sequence conservation. It was possible to identify a core of proteins whose evolutionary trees strongly correlate with each other, suggesting their genetic interaction. This group includes the capsid proteins, which are thus established as extremely suitable for rebuilding the phylogenetic tree of this viral clade. A negative correlation between the ubiquity and the conservation of viral protein sequences was shown. Together, this study provides an in-depth picture of the evolution of different genes in crAss-like viruses.


Asunto(s)
Virus ADN/genética , Evolución Molecular , Virus/genética , Bacteriófagos/genética , Proteínas de la Cápside/genética , Heces/virología , Microbioma Gastrointestinal , Genoma Viral , Humanos , Metagenoma , Metagenómica , Filogenia , Proteínas Virales/genética
5.
Antibiotics (Basel) ; 7(1)2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-29382143

RESUMEN

Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillin-resistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host-phage relationship in this important pathogen with the outlook to targeted phage therapy applications.

6.
Viruses ; 8(5)2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27153081

RESUMEN

The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].


Asunto(s)
Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Biología Computacional/métodos , Genoma Viral , Especificidad del Huésped
7.
Viruses ; 7(12): 6570-89, 2015 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-26703713

RESUMEN

Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the combat against antibiotic-resistant bacterial infections. However, technology transfer to Western medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor. In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute, Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample, de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host strains were infected with the cocktail and the resulting lysates sequenced and compared to the unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in the cocktail, among those clusters related to the ICTV genera T4likevirus, T5likevirus, T7likevirus, Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to have different abundances within the cocktail. The cocktail was found to be composed primarily of Myoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable genes were found.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Productos Biológicos/normas , Enterobacteriaceae/virología , Genoma Viral , Metagenoma , Georgia (República) , Metagenómica , Myoviridae/clasificación , Myoviridae/genética , Podoviridae/clasificación , Podoviridae/genética , Siphoviridae/clasificación , Siphoviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA