Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Opt Soc Am A Opt Image Sci Vis ; 36(4): 686-704, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044992

RESUMEN

Optical resonators are widely used in modern photonics. Their spectral response and temporal dynamics are fundamentally driven by their natural resonances, the so-called quasinormal modes (QNMs), with complex frequencies. For optical resonators made of dispersive materials, the QNM computation requires solving a nonlinear eigenvalue problem. This raises a difficulty that is only scarcely documented in the literature. We review our recent efforts for implementing efficient and accurate QNM solvers for computing and normalizing the QNMs of micro- and nanoresonators made of highly dispersive materials. We benchmark several methods for three geometries, a two-dimensional plasmonic crystal, a two-dimensional metal grating, and a three-dimensional nanopatch antenna on a metal substrate, with the perspective to elaborate standards for the computation of resonance modes.

2.
Sci Rep ; 10(1): 10545, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601374

RESUMEN

We analyse possibilities to quantitatively evaluate the surface second-order optical nonlinearity in noncentrosymmetric materials based on polarization-resolved analysis of far-field radiation patterns of second-harmonic generation. We analytically demonstrate that for plane-wave illumination the contribution to the second-harmonic signal from the surface of a nonlinear medium exhibits different polarization properties and angular dependencies compared to the contribution from the bulk. In view of this, we optimize the illumination geometry in order to enable the most efficient separation and comparison of both nonlinearities. Furthermore, we consider the illumination of an AlGaAs slab by a tightly-focused linearly-polarized Gaussian beam as an alternative measurement geometry. It is found that the reliable separation of the surface nonlinearity contribution as well as a wide range of detectable values can be achieved with this geometry as well.

3.
Phys Rev Lett ; 95(20): 203901, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16384056

RESUMEN

Arrays of gold split rings with a 50-nm minimum feature size and with an LC resonance at 200 THz frequency (1.5 microm wavelength) are fabricated. For normal-incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800 nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA