Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(22): 5794-5805, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36367985

RESUMEN

N-terminal P23H opsin mutation accounts for most of retinitis pigmentosa (RP) cases. P23H functions and folding can be rescued by small chaperone ligands, which contributes to validate mutant opsin as a suitable target for pharmacological treatment of RP. However, the lack of structural details on P23H mutant opsin strongly impairs drug design, and new chemotypes of effective chaperones of P23H opsin are in high demand. Here, a computational-boosted workflow combining homology modeling with molecular dynamics (MD) simulations and virtual screening was used to select putative P23H opsin chaperones among different libraries through a structure-based approach. In vitro studies corroborated the reliability of the structural model generated in this work and identified a number of novel chemotypes of safe and effective chaperones able to promote P23H opsin trafficking to the outer cell membrane.


Asunto(s)
Opsinas , Retinitis Pigmentosa , Humanos , Opsinas/genética , Reproducibilidad de los Resultados , Opsinas de Bastones/química , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/uso terapéutico
2.
Front Pharmacol ; 14: 1101023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843952

RESUMEN

P2X receptors are a family of ATP-gated cation channels comprising seven subtypes in mammals, which play key roles in nerve transmission, pain sensation and inflammation. The P2X4 receptor in particular has attracted significant interest from pharmaceutical companies due to its physiological roles in neuropathic pain and modulation of vascular tone. A number of potent small-molecule P2X4 receptor antagonists have been developed, including the allosteric P2X4 receptor antagonist BX430, which is approximately 30-fold more potent at human P2X4 compared with the rat isoform. A single amino-acid difference between human and rat P2X4 (I312T), located in an allosteric pocket, has previously been identified as critical for BX430 sensitivity, implying that BX430 binds in this pocket. Using a combination of mutagenesis, functional assay in mammalian cells and in silico docking we confirmed these findings. Induced-fit docking, permitting the sidechains of the amino-acids of P2X4 to move, showed that BX430 could access a deeper portion of the allosteric pocket, and that the sidechain of Lys-298 was important for shaping the cavity. We then performed blind docking of 12 additional P2X4 antagonists into the receptor extracellular domain, finding that many of these compounds favored the same pocket as BX430 from their calculated binding energies. Induced-fit docking of these compounds in the allosteric pocket enabled us to show that antagonists with high potency (IC50 ≤ 100 nM) bind deep in the allosteric pocket, disrupting a network of interacting amino acids including Asp-85, Ala-87, Asp-88, and Ala-297, which are vital for transmitting the conformational change following ATP binding to channel gating. Our work confirms the importance of Ile-312 for BX430 sensitivity, demonstrates that the allosteric pocket where BX430 binds is a plausible binding pocket for a series of P2X4 antagonists, and suggests a mode of action for these allosteric antagonists involving disruption of a key structural motif required for the conformational change induced in P2X4 when ATP binds.

3.
Front Pharmacol ; 13: 1094607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36712671

RESUMEN

P2X4 and P2X7 receptors are ATP-gated ion channels, which play important roles in neuropathic and inflammatory pain, and as such they are important drug targets in diseases of inflammatory origin. While several compounds targeting P2X4 and P2X7 receptors have been developed using traditional high-throughput screening approaches, relatively few compounds have been developed using structure-based design. We initially set out to develop compounds targeting human P2X4, by performing virtual screening on the orthosteric (ATP-binding) pocket of a molecular model of human P2X4 based on the crystal structure of the Danio rerio receptor. The screening of a library of approximately 300,000 commercially available drug-like compounds led to the initial selection of 17 compounds; however, none of these compounds displayed a significant antagonist effect at P2X4 in a Fluo-4 ATP-induced calcium influx assay. When the same set of compounds was tested against human P2X7 in an ATP-stimulated Yo-Pro1 dye uptake assay, one compound (an indeno(1,2-b)pyridine derivative; GP-25) reduced the response by greater than 50% when applied at a concentration of 30 µM. GP-25 displayed an IC50 value of 8.7 µM at human P2X7 and 24.4 µM at rat P2X7, and was confirmed to be active using whole-cell patch clamp electrophysiology and not cytotoxic. Schild analysis suggested that mode of action of GP-25 was orthosteric. Screening of a further 16 commercially available analogues of GP-25 led to the discovery of five additional compounds with antagonist activity at human P2X7, enabling us to investigate the structure-activity relationship. Finally, docking of the R- and S-enantiomers of GP-25 into the orthosteric pocket of molecular models of human P2X4 and human P2X7 revealed that, while both enantiomers were able to make multiple interactions between their carboxyl moieties and conserved positively charged amino-acids in human P2X7, only the S-enantiomer of GP-25 was able to do this in human P2X4, potentially explaining the lack of activity of GP-25 at this receptor.

4.
Eur J Pharm Biopharm ; 149: 85-94, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001314

RESUMEN

Alveolar osteitis is a complication that can occur after tooth extraction, whereby exposed bone results in severe throbbing pain for the patient and can be prone to infection. The current treatment options are widely regarded as sub-optimal. The aim of this project was to investigate in vitro the plausibility of a dual-action monolithic drug-loaded thermosensitive hydrogel that undergoes thermal gelation within the tooth socket and releases both anaesthetic and antimicrobial agents. Hydrogels containing different levels of lidocaine HCl and metronidazole were prepared based upon Carbopol 934P NF and Pluronic F-127 blends. Membrane-less drug release was determined from the set hydrogels into phosphate buffered saline (PBS) at 37 °C as a function of time, following analysis by HPLC. Gelation characteristics and hydrogel dissolution characteristics were also determined. At 23.38% Pluronic F-127, sol-gel transition commenced at 23 °C and gelation was completely at 37 °C (physiological temperature). Setting times varied with Pluronic content and there was an inverse relationship between drug release and Pluronic content. Sustained and dose dependent release of both drugs was observed at therapeutically relevant levels over 24 h, via a combination of diffusion, dissolution and surface erosion processes. Based on the amounts of drugs released, it was determined that hydrogels containing up to 0.5% lidocaine and 0.1% metronidazole exhibited low risk of cytotoxicity to primary human gingival fibroblasts. In an in vivo scenario, the sol-phase formulation would make contact with all inner surfaces of a tooth socket prior to transitioning to monolithic gel-phase and provide sustained release of lidocaine and metronidazole at sub-toxic levels, thereby providing simultaneous pain relief, protection from ingress of debris and pathological bacteria.


Asunto(s)
Sistemas de Liberación de Medicamentos , Alveolo Seco/tratamiento farmacológico , Lidocaína/administración & dosificación , Metronidazol/administración & dosificación , Acrilatos/química , Anestésicos Locales/administración & dosificación , Anestésicos Locales/farmacología , Anestésicos Locales/toxicidad , Antiinfecciosos/administración & dosificación , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Células Cultivadas , Liberación de Fármacos , Fibroblastos/efectos de los fármacos , Encía/citología , Encía/efectos de los fármacos , Humanos , Hidrogeles , Lidocaína/farmacología , Lidocaína/toxicidad , Metronidazol/farmacología , Metronidazol/toxicidad , Transición de Fase , Poloxámero/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA