Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(4): 2448-2458, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31790213

RESUMEN

Despite recent evidence from full-scale plants suggesting that Candidatus Accumulibacter may be capable of using amino acids, this metabolic trait has never been confirmed in a bioreactor experiment. Here we show that an enriched culture of Ca. Accumulibacter clade IIF strain SCELSE-1 could metabolize 11 of 20 α-amino acids, with aspartate, glutamate, asparagine, and glutamine resulting in the highest phosphorus removal. The anaerobic uptake of aspartate and glutamate was achieved through a glutamate/aspartate-proton symporter fully powered by the proton motive force (PMF). Under anaerobic conditions aspartate was deaminized and routed into core carbon metabolic pathways to form polyhydroxyalkanoates (PHA). The lack of genes encoding NADH dependent isocitrate dehydrogenase in the Ca. Accumulibacter genome resulted in a kinetic barrier for glutamate to be channelled to the TCA cycle. Glutamate was stored as glutamate polymer. When amino acids (aspartate or glutamate) and acetate were supplied together, Ca. Accumulibacter took up both carbon sources simultaneously, with the uptake rate of each carbon source largely preserved. Overall energy savings (up to 17%) were achieved under mixed carbon scenarios, due to the ability of Ca. Accumulibacter to rearrange its anaerobic carbon metabolism based on the reducing power, PMF and ATP balance.


Asunto(s)
Carbono , Fósforo , Aminoácidos , Anaerobiosis , Reactores Biológicos
2.
PLoS One ; 17(4): e0267212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452479

RESUMEN

Testing surfaces in school classrooms for the presence of SARS-CoV-2, the virus that causes COVID-19, can provide public-health information that complements clinical testing. We monitored the presence of SARS-CoV-2 RNA in five schools (96 classrooms) in Davis, California (USA) by collecting weekly surface-swab samples from classroom floors and/or portable high-efficiency particulate air (HEPA) units (n = 2,341 swabs). Twenty-two surfaces tested positive, with qPCR cycle threshold (Ct) values ranging from 36.07-38.01. Intermittent repeated positives in a single room were observed for both floor and HEPA filter samples for up to 52 days, even following regular cleaning and HEPA filter replacement after a positive result. We compared the two environmental sampling strategies by testing one floor and two HEPA filter samples in 57 classrooms at Schools D and E. HEPA filter sampling yielded 3.02% and 0.41% positivity rates per filter sample collected for Schools D and E, respectively, while floor sampling yielded 0.48% and 0% positivity rates. Our results indicate that HEPA filter swabs are more sensitive than floor swabs at detecting SARS-CoV-2 RNA in interior spaces. During the study, all schools were offered weekly free COVID-19 clinical testing through Healthy Davis Together (HDT). HDT also offered on-site clinical testing in Schools D and E, and upticks in testing participation were observed following a confirmed positive environmental sample. However, no confirmed COVID-19 cases were identified among students associated with classrooms yielding positive environmental samples. The positive samples detected in this study appeared to contain relic viral RNA from individuals infected before the monitoring program started and/or RNA transported into classrooms via fomites. High-Ct positive results from environmental swabs detected in the absence of known active infections supports this conclusion. Additional research is needed to differentiate between fresh and relic SARS-CoV-2 RNA in environmental samples and to determine what types of results should trigger interventions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Polvo , Monitoreo del Ambiente , Humanos , ARN Viral/genética , SARS-CoV-2/genética , Instituciones Académicas
3.
ACS ES T Water ; 2(11): 2114-2124, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552742

RESUMEN

Wastewater-based epidemiology (WBE) is a useful complement to clinical testing for managing COVID-19. While community-scale wastewater and clinical data frequently correlate, less is known about subcommunity relationships between the two data types. Moreover, nondetects in qPCR wastewater data are typically handled through methods known to bias results, overlooking perhaps better alternatives. We address these knowledge gaps using data collected from September 2020-June 2021 in Davis, California (USA). We hypothesize that coupling the expectation maximization (EM) algorithm with the Markov Chain Monte Carlo (MCMC) method could improve estimation of "missing" values in wastewater qPCR data. We test this hypothesis by applying EM-MCMC to city wastewater treatment plant data and comparing output to more conventional nondetect handling methods. Dissimilarities in results (i) underscore the importance of specifying nondetect handling method in reporting and (ii) suggest that using EM-MCMC may yield better agreement between community-scale clinical and wastewater data. We also present a novel framework for spatially aligning clinical data with wastewater data collected upstream of a treatment plant (i.e., distributed across a sewershed). Applying the framework to data from Davis reveals reasonable agreement between wastewater and clinical data at highly granular spatial scales-further underscoring the public-health value of WBE.

4.
mSphere ; 7(6): e0017722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36218344

RESUMEN

Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Aguas Residuales , Pandemias
5.
Water Res ; 216: 118301, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364353

RESUMEN

Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.


Asunto(s)
Betaproteobacteria , Fósforo , Betaproteobacteria/metabolismo , Reactores Biológicos , Carbono , Estudios de Factibilidad , Calentamiento Global , Glucógeno/metabolismo , Hibridación Fluorescente in Situ , Fósforo/metabolismo , Polifosfatos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
6.
Curr Opin Biotechnol ; 67: 166-174, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33582603

RESUMEN

Enhanced biological phosphorus removal (EBPR) is an efficient, cost-effective, and sustainable method for removing excess phosphorus from wastewater. Polyphosphate accumulating organisms (PAOs) exhibit a unique physiology alternating between anaerobic conditions for uptake of carbon substrates and aerobic or anoxic conditions for phosphorus uptake. The implementation of high-throughput sequencing technologies and advanced molecular tools along with biochemical characterization has provided many new perspectives on the EBPR process. These approaches have helped identify a wide range of carbon substrates and electron acceptors utilized by PAOs that in turn influence interactions with microbial community members and determine overall phosphorus removal efficiency. In this review, we systematically discuss the microbial diversity and metabolic response to a range of environmental conditions and process control strategies in EBPR.


Asunto(s)
Microbiota , Fósforo , Reactores Biológicos , Carbono , Polifosfatos , Aguas Residuales
7.
Metabolites ; 11(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925970

RESUMEN

Metabolome profiling is becoming more commonly used in the study of complex microbial communities and microbiomes; however, to date, little information is available concerning appropriate extraction procedures. We studied the influence of different extraction solvent mixtures on untargeted metabolomics analysis of two continuous culture enrichment communities performing enhanced biological phosphate removal (EBPR), with each enrichment targeting distinct populations of polyphosphate-accumulating organisms (PAOs). We employed one non-polar solvent and up to four polar solvents for extracting metabolites from biomass. In one of the reactor microbial communities, we surveyed both intracellular and extracellular metabolites using the same set of solvents. All samples were analysed using ultra-performance liquid chromatography mass spectrometry (UPLC-MS). UPLC-MS data obtained from polar and non-polar solvents were analysed separately and evaluated using extent of repeatability, overall extraction capacity and the extent of differential abundance between physiological states. Despite both reactors demonstrating the same bioprocess phenotype, the most appropriate extraction method was biomass specific, with methanol: water (50:50 v/v) and methanol: chloroform: water (40:40:20 v/v) being chosen as the most appropriate for each of the two different bioreactors, respectively. Our approach provides new data on the influence of solvent choice on the untargeted surveys of the metabolome of PAO enriched EBPR communities and suggests that metabolome extraction methods need to be carefully tailored to the specific complex microbial community under study.

8.
NPJ Biofilms Microbiomes ; 7(1): 23, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727564

RESUMEN

New long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities. Using long read data (ONT MinION) obtained from an ensemble of activated sludge enrichment bioreactors we recover 22 closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses, specifically microbes known to exhibit the polyphosphate- and glycogen-accumulating organism phenotypes (namely Candidatus Accumulibacter and Dechloromonas, and Micropruina, Defluviicoccus and Candidatus Contendobacter, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs. Additionally we demonstrate the recovery of close to 100 circularised plasmids, phages and small microbial genomes from these microbial communities using long read assembled sequence. We describe methods for validating long read assembled genomes using their counterpart short read metagenome-assembled genomes, and assess the influence of different correction procedures on genome quality and predicted gene quality. Our findings establish the feasibility of performing long read metagenome-assembled genome recovery for both chromosomal and non-chromosomal replicons, and demonstrate the value of parallel sampling of moderately complex enrichment communities to obtaining high quality reference genomes of key functional species relevant for wastewater bioprocesses.


Asunto(s)
Bacterias/clasificación , Reactores Biológicos/microbiología , Biología Computacional/métodos , Aguas del Alcantarillado/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/virología , Bacteriófagos/genética , Genoma Bacteriano , Glucógeno/metabolismo , Metagenoma , Plásmidos/genética , Polifosfatos/metabolismo
9.
Water Res ; 149: 496-510, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476778

RESUMEN

Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures.


Asunto(s)
Carbono , Aguas Residuales , Reactores Biológicos , Fósforo , Polifosfatos , Singapur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA