Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37972067

RESUMEN

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Asunto(s)
Dolor Crónico , Peptidomiméticos , Ratas , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Ratas Sprague-Dawley , Peptidomiméticos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglios Espinales/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108349

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically defined by motor instability, bradykinesia, and resting tremors. The clinical symptomatology is seen alongside pathologic changes, most notably the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of α-synuclein and neuromelanin aggregates throughout numerous neural circuits. Traumatic brain injury (TBI) has been implicated as a risk factor for developing various neurodegenerative diseases, with the most compelling argument for the development of PD. Dopaminergic abnormalities, the accumulation of α-synuclein, and disruptions in neural homeostatic mechanisms, including but not limited to the release of pro-inflammatory mediators and the production of reactive oxygen species (ROS), are all present following TBI and are closely related to the pathologic changes seen in PD. Neuronal iron accumulation is discernable in degenerative and injured brain states, as is aquaporin-4 (APQ4). APQ4 is an essential mediator of synaptic plasticity in PD and regulates edematous states in the brain after TBI. Whether the cellular and parenchymal changes seen post-TBI directly cause neurodegenerative diseases such as PD is a point of considerable interest and debate; this review explores the vast array of neuroimmunological interactions and subsequent analogous changes that occur in TBI and PD. There is significant interest in exploring the validity of the relationship between TBI and PD, which is a focus of this review.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Neuroinmunomodulación , Enfermedades Neurodegenerativas/patología , Neuronas Dopaminérgicas/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Sustancia Negra/metabolismo
3.
J Neurosci ; 41(36): 7532-7545, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326141

RESUMEN

Acetaldehyde (ACD), the first metabolite of ethanol, is implicated in several of ethanol's actions, including the reinforcing and aversive effects. The neuronal mechanisms underlying ACD's aversive effect, however, are poorly understood. The lateral habenula (LHb), a regulator of midbrain monoaminergic centers, is activated by negative valence events. Although the LHb has been linked to the aversive responses of several abused drugs, including ethanol, little is known about ACD. We, therefore, assessed ACD's action on LHb neurons in rats. The results showed that intraperitoneal injection of ACD increased cFos protein expression within the LHb and that intra-LHb infusion of ACD induced conditioned place aversion in male rats. Furthermore, electrophysiological recording in brain slices of male and female rats showed that bath application of ACD facilitated spontaneous firing and glutamatergic transmission. This effect of ACD was potentiated by an aldehyde dehydrogenase (ALDH) inhibitor, disulfiram (DS), but attenuated by the antagonists of dopamine (DA) receptor (DAR) subtype 1 (SCH23390) and subtype 2 (raclopride), and partly abolished by the pretreatment of DA or DA reuptake blocker (GBR12935; GBR). Moreover, application of ACD initiated a depolarizing inward current (IACD) and enhanced the hyperpolarizing-activated currents in LHb neurons. Bath application of Rp-cAMPs, a selective cAMP-PKA inhibitor, attenuated ACD-induced potentiation of EPSCs and IACD Finally, bath application of ZD7288, a selective blocker of hyperpolarization-activated cyclic nucleotide-gated channels, attenuated ACD-induced potentiation of firing, EPSCs, and IACD These results show that ACD exerts its aversive property by exciting LHb neurons via multiple cellular mechanisms, and new treatments targeting the LHb may be beneficial for alcoholism.SIGNIFICANCE STATEMENT Acetaldehyde (ACD) has been considered aversive peripherally and rewarding centrally. However, whether ACD has a central aversive property is unclear. Here, we report that ACD excites the lateral habenula (LHb), a brain region associated with aversion and negative valence, through multiple cellular and molecular mechanisms. Intra-LHb ACD produces significant conditioned place aversion. These results suggest that ACD's actions on the LHb neurons might contribute to its central aversive property and new treatments targeting the LHb may be beneficial for alcoholism.


Asunto(s)
Acetaldehído/farmacología , Reacción de Prevención/efectos de los fármacos , Habénula/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Disulfiram/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Ácido Glutámico/metabolismo , Habénula/fisiología , Masculino , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Transmisión Sináptica/efectos de los fármacos
4.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143210

RESUMEN

Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.


Asunto(s)
Alcoholismo/fisiopatología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Trastorno Depresivo/fisiopatología , Habénula/patología , Animales , Comorbilidad , Habénula/metabolismo , Humanos
5.
Anesthesiology ; 130(4): 592-608, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676422

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Chronic alcohol use and withdrawal leads to increased pain perception, anxiety, and depression. These aberrant behaviors are accompanied by increased excitatory glutamatergic transmission to, and activity of, the lateral habenula neurons.Vanilloid type 1, or TRPV1, channels are expressed in the habenula and they facilitate glutamatergic transmission. Whether TRPV1 channel plays a role in habenula hyperactivity is not clear. WHAT THIS ARTICLE TELLS US THAT IS NEW: Glutamatergic transmission in the lateral habenula was inhibited by TRPV1 channel antagonists. In vivo, local administration of TRPV1 antagonists into the lateral habenula attenuated hyperalgesia, anxiety, and relapse-like drinking in rats who chronically consumed alcohol.The data suggest that enhanced TRPV1 channel function during withdrawal may contribute to aberrant behavior that promotes relapse alcohol consumption. BACKGROUND: Recent rat studies indicate that alcohol withdrawal can trigger a negative emotional state including anxiety- and depression-like behaviors and hyperalgesia, as well as elevated glutamatergic transmission and activity in lateral habenula neurons. TRPV1, a vanilloid receptor expressed in the habenula, is involved in pain, alcohol dependence, and glutamatergic transmission. The authors therefore hypothesized that TRPV1 contributes to the changes in both the behavioral phenotypes and the habenula activity in alcohol-withdrawn rats. METHODS: Adult male Long-Evans rats (n = 110 and 280 for electrophysiology and behaviors, respectively), randomly assigned into the alcohol and water (Naïve) groups, were trained to consume either alcohol or water-only using an intermittent-access procedure. Slice electrophysiology was used to measure spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons. The primary outcome was the change in alcohol-related behaviors and lateral habenula activity induced by pharmacologic manipulation of TRPV1 activity. RESULTS: The basal frequency of spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons in alcohol-withdrawn rats was significantly increased. The TRPV1 antagonist capsazepine (10 µM) induced a stronger inhibition on spontaneous excitatory postsynaptic currents (mean ± SD; by 26.1 ± 27.9% [n = 11] vs. 6.7 ± 18.6% [n = 17], P = 0.027) and firing (by 23.4 ± 17.6% [n = 9] vs. 11.9 ± 16.3% [n = 12], P = 0.025) in Withdrawn rats than Naive rats. By contrast, the TRPV1 agonist capsaicin (3 µM) produced a weaker potentiation in Withdrawn than Naïve rats (spontaneous excitatory postsynaptic currents: by 203.6 ± 124.7% [n = 20] vs. 415.2 ± 424.3% [n = 15], P < 0.001; firing: 38.1 ± 14.7% [n = 11] vs. 73.9 ± 41.9% [n = 11], P < 0.001). Conversely, capsaicin's actions in Naïve but not in Withdrawn rats were significantly attenuated by the pretreatment of TRPV1 endogenous agonist N-Oleoyldopamine. In Withdrawn rats, intra-habenula infusion of TRPV1 antagonists attenuated hyperalgesia and anxiety-like behaviors, decreased alcohol consumption upon resuming drinking, and elicited a conditioned place preference. CONCLUSIONS: Enhanced TRPV1 function may contribute to increased glutamatergic transmission and activity of lateral habenula neurons, resulting in the aberrant behaviors during ethanol withdrawal.


Asunto(s)
Alcoholismo/metabolismo , Reacción de Prevención/fisiología , Habénula/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Canales Catiónicos TRPV/biosíntesis , Alcoholismo/complicaciones , Alcoholismo/tratamiento farmacológico , Animales , Reacción de Prevención/efectos de los fármacos , Dopamina/análogos & derivados , Dopamina/farmacología , Dopamina/uso terapéutico , Etanol/administración & dosificación , Habénula/efectos de los fármacos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Long-Evans , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/etiología , Canales Catiónicos TRPV/antagonistas & inhibidores
6.
Cell Biochem Funct ; 37(7): 486-493, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31368181

RESUMEN

Although the spontaneous chloride currents (SCC) have been well studied in the normal cells, its properties and roles in neoplasms cells are still unknown. Here, we found that the SCC was manifested in the poorly differentiated human nasopharyngeal carcinoma CNE-2Z cells, with some differences such as lower occurrence and bigger current density than those of the volume-activated chloride currents (VACC). NPPB, a chloride channel blocker, inhibited the SCC much stronger than the VACC. Down-regulation of chloride channel -3 (ClC-3), a volume and mechanically dependent ion channel, could significantly decrease the VACC, but not in SCC. The occurrence, latency, and mean density of the SCC were much lower in the normal nasopharyngeal NP69-SV40T cells than those in CNE-2Z cells. Our results demonstrated that the spontaneous electrical reactivity of neoplasm cells is higher than that of normal cells, which probably relates to their high physiological activity of neoplasm cells. SIGNIFICANCE OF THE STUDY: Spontaneous chloride currents (SCC) are well known in excitable tissues and regulate a variety of physiological and pathophysiological processes. During our researching on the volume-activated chloride currents (VACC) in human nasopharyngeal carcinoma CNE-2Z cells, SCC could be also observed with different properties from VACC. Meanwhile, the occurrence, latency, and mean density of the SCC were much higher in CNE-2Z cells than those in normal nasopharyngeal NP69-SV40T cells. Our results revealed the expression and characteristics of SCC in carcinoma cells and provided a preliminary experimental basis for further exploring the function of SCC in tumour cell biology.


Asunto(s)
Cloruros/metabolismo , Células Epiteliales/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Células Cultivadas , Humanos
7.
J Cell Physiol ; 233(2): 1071-1081, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28419445

RESUMEN

Although extensively studied, the mechanisms by which estrogen promotes breast cancer growth remain to be fully elucidated. Tamoxifen, an antiestrogen agent to treat ERα+ breast cancer, is also a high-affinity blocker of the chloride channels. In this study, we explored the involvement of the chloride channels in the action of estrogen in breast cancer. We found that 17ß-estradiol (17ß-E2) concentration-dependently activated the chloride currents in ERα+ breast cancer MCF-7 cells. Extracellular hypertonic challenge and chloride channel blockers, NPPB and DIDS inhibited the 17ß-E2-activated chloride currents. Decreased the ClC-3 protein expression caused the depletion of the 17ß-E2-activated chloride currents. 17ß-E2-activated chloride currents which relied on the ERα expression were demonstrated by the following evidences. Firstly, 17ß-E2-activated chloride currents could not be observed in ERα- breast cancer MDA-MB-231 cells. Secondly, ER antagonists, tamoxifen and ICI 182,780, and downregulation of ERα expression inhibited or abolished the 17ß-E2-activated chloride currents. Thirdly, ERα expression was induced in MDA-MB-231 cells by ESR1 gene transfection, and then 17ß-E2-activated chloride currents could be observed. In MCF-7 cells, ERα and ClC-3 mainly located in nucleus and translocated to cell plasma and membrane with respect to co-localization following treatment of 17ß-E2. Downregulation of ERα expression could decrease the expression of ClC-3 protein. Conversely, downregulation of ClC-3 expression did not influence the ERα expression. Taken together, our findings demonstrated that ClC-3 is a potential target of 17ß-E2 and is modulated by the ERα in breast cancer cell. Pharmacological modulation of ClC-3 may provide a deep understanding in antiestrogen treatment of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/metabolismo , Agonistas de los Canales de Cloruro/farmacología , Canales de Cloruro/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Relación Dosis-Respuesta a Droga , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Potenciales de la Membrana , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección
8.
Alcohol Clin Exp Res ; 41(3): 637-643, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28166603

RESUMEN

BACKGROUND: Hyperalgesia or increased sensitivity to pain is often found in alcoholics during alcohol withdrawal and may contribute to relapse drinking. Alternative therapies such as acupuncture and electroacupuncture (EA), through mechanisms involving opioid receptors, may reduce pain and substance dependence and withdrawal syndromes. The lateral habenula (LHb), an epithalamic structure rich in mu opioid receptors (MORs), is a critical target for both drugs of abuse and pain. We previously observed hyperalgesia in rats withdrawn from chronic ethanol (EtOH) drinking and found that EA at the acupoint Zusanli (ST36) reduced EtOH intake. This raised question of whether EA can alleviate hyperalgesia during alcohol withdrawal and, if so, whether the mechanism involves MORs in the LHb. METHODS: We trained male rats to drink EtOH using the intermittent access 20% EtOH 2-bottle free-choice drinking paradigm for 8 weeks, after which the alcohol supply was discontinued. We measured pain sensitivity using radiant heat (a light beam directed at the hind paw of rats) and compared the paw withdrawal latencies (PWLs) with and without EA at ST36. RESULTS: The PWLs were significantly shorter in rats at 24, 48, and 72 hours and 7 days after the discontinuation of EtOH when compared to EtOH-naïve rats. After a single administration of 2-Hz EA for 20 minutes at ST36, the PWLs at 24 hours after the withdrawal of EtOH were significantly greater than those of the sham group (2-Hz EA at the tail). Furthermore, the effect of EA on PWLs was significantly attenuated by bilateral intrahabenula infusion of the MOR antagonist naltrexone. CONCLUSIONS: These results suggest that EA can alleviate hyperalgesia during EtOH withdrawal through a mechanism involving MORs in the habenula. Based on this, EA could be of potential value as a therapy for hyperalgesia in alcohol dependence.


Asunto(s)
Alcoholismo/terapia , Electroacupuntura/métodos , Habénula/efectos de los fármacos , Hiperalgesia/prevención & control , Receptores Opioides mu/antagonistas & inhibidores , Síndrome de Abstinencia a Sustancias/terapia , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/terapia , Alcoholismo/complicaciones , Animales , Habénula/fisiología , Hiperalgesia/etiología , Masculino , Microinyecciones , Antagonistas de Narcóticos/administración & dosificación , Ratas , Ratas Long-Evans , Receptores Opioides mu/fisiología , Síndrome de Abstinencia a Sustancias/etiología
9.
Addict Biol ; 22(1): 103-116, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26283508

RESUMEN

There has been increasing interest in the lateral habenula (LHb) given its potent regulatory role in many aversion-related behaviors. Interestingly, ethanol can be rewarding as well as aversive; we therefore investigated whether ethanol exposure alters pacemaker firing or glutamate receptor signaling in LHb neurons in vitro and also whether LHb activity in vivo might contribute to the acquisition of conditioned place aversion to ethanol. Surprisingly, in epithalamic slices, low doses of ethanol (1.4 mM) strongly accelerated LHb neuron firing (by ~60%), and ethanol's effects were much reduced by blocking glutamate receptors. Ethanol increased presynaptic glutamate release, and about half of this effect was mediated by dopamine subtype 1 receptors (D1Rs) and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. In agreement with these findings, c-Fos immunoreactivity in LHb regions was enhanced after a single administration of a low dose of ethanol (0.25 g/kg i.p.). Importantly, the same dose of ethanol in vivo also produced strong conditioned place aversion, and this was prevented by inhibiting D1Rs or neuronal activity within the LHb. By contrast, a higher dose (2 g/kg) led to ethanol conditioned place preference, which was enhanced by inhibiting neuronal activity or D1Rs within the LHb and suppressed by infusing aminomethylphosphonic acid or the D1R agonist SKF38393 within the LHb. Our in vitro and in vivo observations show, for the first time, that ethanol increases LHb excitation, mediated by D1R and glutamate receptors, and may underlie a LHb aversive signal that contributes to ethanol-related aversion.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Etanol/farmacología , Habénula/fisiología , Receptores Dopaminérgicos/efectos de los fármacos , Receptores de Glutamato/efectos de los fármacos , Animales , Femenino , Masculino , Modelos Animales , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Dopaminérgicos/fisiología , Receptores de Glutamato/fisiología
10.
Int J Neuropsychopharmacol ; 19(10)2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27234303

RESUMEN

BACKGROUND: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. METHODS: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. RESULTS: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. CONCLUSIONS: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics.

11.
Alcohol Clin Exp Res ; 40(3): 572-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26876382

RESUMEN

BACKGROUND: The aversive properties of ethanol (EtOH) that limit its intake are poorly understood. There is an increasing interest in the role of the rostromedial tegmental nucleus (RMTg), because it encodes aversion signals and inhibits motivated behaviors. It is also a major source of inhibitory GABAergic inputs to the midbrain dopamine neurons. Up to this time, the role of the RMTg in EtOH-drinking behaviors has not been well explored. METHODS: Male Long-Evans rats were trained either to drink EtOH under the intermittent 2-bottle-choice protocol or to self-administer EtOH in operant chambers under fixed-ratio-3 schedules. Changes in drinking behaviors induced by the bilateral infusion into the RMTg of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), an agonist of AMPA-type glutamate receptors, or muscimol, an agonist of GABAA receptors, were measured. RESULTS: Consumption and preference for EtOH, numbers of active lever pressing, and head entrance to the EtOH port were all significantly decreased upon activation of the RMTg by the infusion of AMPA, but were increased upon inhibition of the RMTg by the infusion of muscimol. By contrast, intra-RMTg infusion of these agents did not change sucrose consumption. CONCLUSIONS: These data show for the first time that EtOH-drinking and EtOH-seeking behaviors of rats changed inversely with RMTg function, supporting the idea that the RMTg plays a crucial role in EtOH-drinking behaviors.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Etanol/administración & dosificación , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/fisiología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Animales , Masculino , Microinyecciones , Muscimol/administración & dosificación , Ratas , Ratas Long-Evans , Autoadministración , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/administración & dosificación
12.
Alcohol Clin Exp Res ; 39(8): 1341-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26148226

RESUMEN

BACKGROUND: Excessive alcohol consumption has been identified as a significant risk factor for cancer development. Chloride channels have been proved previously by us and others to be involved in cancer cell migration. However, it is unknown whether chloride channels are associated with the effects of ethanol (EtOH) on cancer cell activities. METHODS: The effects of EtOH on migration were detected by the wound healing assay in the nasopharyngeal carcinoma cells (CNE-2Z) and the normal nasopharyngeal epithelial cells (NP69-SV40T). The whole-cell patch clamp technique was used to record the EtOH-induced chloride current. The characteristics of the current were studied by anion substitution, hypertonic challenges, and channel blockers. RESULTS: EtOH promoted the migration of cancerous CNE-2Z cells, but could hardly affect the migration of normal NP69-SV40T cells. The EtOH-induced migration could be inhibited by the chloride channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. The exposure of CNE-2Z cells to EtOH activated a chloride current, with the ion selectivity of I(-) >Br(-) > Cl(-) >gluconate, demonstrated by ion substitution experiments. EtOH could still activate a similar chloride current in the absence of Ca(2+) in the medium. The current could be inhibited by the hypertonicity-induced cell shrinkage and the channel blockers NPPB and tamoxifen. EtOH could also activate a chloride current in normal NP69-SV40T cells, with the properties similar to those in CNE-2Z cells, but the current density was much smaller than that recorded in cancerous CNE-2Z cells. CONCLUSIONS: It has been demonstrated in this study that EtOH can activate chloride channels and promote cell migration in cancerous cells, but can hardly affect the activities in normal cells. The data suggest for the first time that EtOH may promote cell migration via activation of chloride channels; long-term exposure to EtOH may increase the incident of tumor metastasis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Canales de Cloruro/metabolismo , Etanol/farmacología , Neoplasias Nasofaríngeas/metabolismo , Carcinoma , Línea Celular Transformada , Línea Celular Tumoral , Movimiento Celular/fisiología , Humanos , Carcinoma Nasofaríngeo
13.
JCI Insight ; 9(12)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38912580

RESUMEN

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Asunto(s)
Regulación hacia Abajo , Ganglios Espinales , Neuralgia , Células Receptoras Sensoriales , Animales , Masculino , Ratones , Potenciales de Acción , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Ratones Endogámicos C57BL , Neuralgia/metabolismo , Neuralgia/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/genética , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Células Receptoras Sensoriales/metabolismo
14.
Anesth Analg ; 117(2): 358-63, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23780420

RESUMEN

BACKGROUND: The cellular mechanisms underlying the sedative effect of general anesthetics are not completely understood. Accumulating evidence indicates that the ventrolateral preoptic area (VLPO) of the hypothalamus plays a critical role. The VLPO contains 2 major types of neurons, the noradrenalin-inhibited GABAergic projecting neurons (NA(-) neurons) and the noradrenalin-excited interneurons (NA(+) neurons) which are probably also γ-aminobutyric acid (GABA)-containing neurons. Our previous work suggests that NA(-) neurons are normally under the inhibitory control of NA(+) neurons. Previous studies also show that GABAergic agents including propofol activate GABAergic projecting neurons in the VLPO, which is believed to lead to the inhibition of the arousal-producing nuclei in the tuberomammillary nucleus and sedation. However, how propofol activates VLPO neurons remains unclear. We explored the possibility that propofol activates NA(-) neurons indirectly, by inhibiting GABAergic transmission including those from VLPO NA(+) neurons. METHODS: Electrophysiological activities were recorded from VLPO cells in acute brain slices of rats. RESULTS: Propofol facilitates the discharges of NA(-) neurons and reduces the frequency, but not the amplitude of spontaneous GABAergic inhibitory postsynaptic currents in NA(-) neurons. Conversely, propofol suppressed the discharges of NA(+) neurons. CONCLUSION: Propofol excites VLPO NA(-) neurons by reducing GABAergic transmission, at least in part by inhibiting VLPO NA(+) neurons. This may be a critical mechanism contributing to propofol-induced sedation.


Asunto(s)
Neuronas Adrenérgicas/efectos de los fármacos , Anestésicos Intravenosos/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Inhibición Neural/efectos de los fármacos , Norepinefrina/metabolismo , Área Preóptica/efectos de los fármacos , Propofol/farmacología , Ácido gamma-Aminobutírico/metabolismo , Neuronas Adrenérgicas/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Neuronas GABAérgicas/metabolismo , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores , Área Preóptica/metabolismo , Ratas , Ratas Sprague-Dawley
15.
Neuropsychopharmacology ; 48(11): 1567-1578, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37059867

RESUMEN

The role of lysophosphatidic acid (LPA) signaling in psychiatric disorders and drug abuse is significant. LPA receptors are widely expressed in the central nervous system, including the lateral habenula (LHb). Recent studies suggest that LHb is involved in a negative emotional state during alcohol withdrawal, which can lead to relapse. The current study examines the role of LHb LPA signaling in the negative affective state associated with alcohol withdrawal. Adult male Long-Evans rats were trained to consume either alcohol or water for eight weeks. At 48 h of withdrawal, alcohol-drinking rats showed anxiety- and depression-like symptoms, along with a significant increase in LPA signaling and related neuronal activation molecules, including autotaxin (ATX, Enpp2), LPA receptor 1/3 (LPA1/3), ßCaMKII, and c-Fos. However, there was a decrease in lipid phosphate phosphatase-related protein type 4 (LPPR4) in the LHb. Intra-LHb infusion of the LPA1/3 receptor antagonist ki-16425 or PKC-γ inhibitor Go-6983 reduced the abnormal behaviors and elevated relapse-like ethanol drinking. It also normalized high LPA1/3 receptors and enhanced AMPA GluA1 phosphorylation in Ser831 and GluA1/GluA2 ratio. Conversely, selective activation of LPA1/3 receptors by intra-LHb infusion of 18:1 LPA induced negative affective states and upregulated ßCaMKII-AMPA receptor phosphorylation in Naive rats, which were reversed by pretreatment with intra-LHb Go-6983. Our findings suggest that disturbances in LPA signaling contribute to adverse affective disorders during alcohol withdrawal, likely through PKC-γ/ßCaMKII-linked glutamate signaling. Targeting LPA may therefore be beneficial for individuals suffering from alcohol use disorders.


Asunto(s)
Alcoholismo , Habénula , Síndrome de Abstinencia a Sustancias , Humanos , Ratas , Masculino , Animales , Alcoholismo/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Habénula/metabolismo , Ratas Long-Evans
16.
Neuropsychopharmacology ; 48(6): 908-919, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36329156

RESUMEN

Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Ratas , Masculino , Animales , Receptores Opioides/metabolismo , Depresión , Hibridación Fluorescente in Situ , Ratas Long-Evans , Péptidos Opioides/metabolismo , Ansiedad/metabolismo , Etanol , Receptor de Nociceptina , Nociceptina
17.
Am J Physiol Cell Physiol ; 303(1): C14-23, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22496242

RESUMEN

Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2-3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I(-) > Br(-) > Cl(-) > gluconate(-). Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Carcinoma , Línea Celular Tumoral , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Humanos , Potenciales de la Membrana/efectos de los fármacos , Carcinoma Nasofaríngeo , Nitrobenzoatos/farmacología , Técnicas de Placa-Clamp , Interferencia de ARN , ARN Interferente Pequeño , Tamoxifeno/farmacología
18.
J Pharmacol Exp Ther ; 341(1): 43-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22209890

RESUMEN

Previous studies in vivo have shown that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse. Although opioid receptors, especially the µ-opioid receptors (MORs), may be involved, the cellular mechanisms mediating the effects of salsolinol have not been fully explored. In the current study, we used whole-cell patch-clamp recordings to examine the effects of salsolinol on dopamine neurons of the ventral tegmental area (VTA) in acute brain slices from Sprague-Dawley rats. Salsolinol (0.01-1 µM) dose-dependently and reversibly increased the ongoing firing of dopamine neurons; this effect was blocked by naltrexone, an antagonist of MORs, and gabazine, an antagonist of GABA(A) receptors. We further showed that salsolinol reduced the frequency without altering the amplitude of spontaneous GABA(A) receptor-mediated inhibitory postsynaptic currents in dopamine neurons. The salsolinol-induced reduction was blocked by both naltrexone and [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin, an agonist of MORs. Thus, salsolinol excites VTA-dopamine neurons indirectly by activating MORs, which inhibit GABA neurons in the VTA. This form of disinhibition seems to be a novel mechanism underlying the effects of salsolinol.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Dopaminérgicas/metabolismo , Isoquinolinas/farmacología , Receptores Opioides mu/metabolismo , Área Tegmental Ventral/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/efectos de los fármacos
19.
J Pharmacol Exp Ther ; 341(1): 33-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22209891

RESUMEN

It is known that the posterior ventral tegmental area (p-VTA) differs from the anterior VTA (a-VTA) in that rats learn to self-administer ethanol into the p-VTA, but not into the a-VTA. Because activation of VTA dopaminergic neurons by ethanol is a cellular mechanism underlying the reinforcement of ethanol consumption, we hypothesized that ethanol may exert different effects on dopaminergic neurons in the p-VTA and a-VTA. In patch-clamp recordings in midbrain slices from young rats (postnatal days 22-32), we detected no significant difference in electrophysiological properties between p-VTA and a-VTA dopaminergic neurons. However, acute exposure to ethanol (21-86 mM) stimulated p-VTA dopaminergic neurons but suppressed a-VTA dopaminergic neurons. Conversely, ethanol (>21 mM) dose-dependently reduced the frequency of the GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) generated by inhibitory neuronal firing but not miniature inhibitory postsynaptic currents (mIPSCs) in p-VTA dopaminergic neurons. By contrast, ethanol increased the frequency and amplitude of both sIPSCs and mIPSCs in a-VTA dopaminergic neurons. All of these effects of ethanol were abolished by a GABA(A) receptor antagonist. There was a strong negative correlation between ethanol-evoked modulation of sIPSCs and neuronal firing in VTA dopaminergic neurons. These results indicate that GABAergic inputs play an important role in ethanol's actions in the VTA. The differential effects of ethanol on sIPSCs and neuronal firing in the p-VTA and a-VTA could be the basis for ethanol reinforcement via the p-VTA.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Etanol/farmacología , GABAérgicos/farmacología , Área Tegmental Ventral/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos , Neuronas Dopaminérgicas/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/efectos de los fármacos
20.
J Cell Physiol ; 226(5): 1176-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20945353

RESUMEN

Stretch-activated chloride currents (I(Cl,SA) ) have been considered to be a component of volume-activated chloride currents (I(Cl,vol) ) for some time. This is due to a similarity in biophysical and pharmacological properties that involve a membrane curvature-induced mechanism and rearrangement of the cytoskeleton induced by cell swelling or membrane stretch. In the present study, we demonstrated that current density, along with the time taken from the activation of currents to the peak, were significantly different between the two currents, in highly metastatic human hepatocellular carcinoma cells. In addition, the activation of I(Cl,vol) or I(Cl,SA), induced maximally by hypotonic solutions or membrane stretch, respectively, did not affect the following activation of the other one. Moreover, neither inhibition of I(Cl,vol) by sh-ClC-3 transfection, nor functional blocking of I(Cl,vol) by intracellular dialysis of anti-ClC-3 antibody had an effect on the activation and properties of I(Cl,SA). Collectively, our results suggest that I(Cl,SA) is different from I(Cl,vol) in activation mechanism and/or in molecular entity responsible for formation of the currents. ClC-3 is involved in the activation of I(Cl,vol), but not of I(Cl,SA).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Forma de la Célula , Canales de Cloruro/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Tamaño de la Célula , Canales de Cloruro/genética , Humanos , Soluciones Hipotónicas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Potenciales de la Membrana , Estimulación Física , Interferencia de ARN , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA