Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Microbiol ; 5(9): 1088-1095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32483230

RESUMEN

Retroviral infection involves the reverse transcription of the viral RNA genome into DNA, which is subsequently integrated into the host cell genome. Human immunodeficiency virus type 1 (HIV-1) and other lentiviruses mediate the infection of non-dividing cells through the ability of the capsid protein1 to engage the cellular nuclear import pathways of the target cell and mediate their nuclear translocation through components of the nuclear pore complex2-4. Although recent studies have observed the presence of the capsid protein in the nucleus during infection5-8, reverse transcription and disassembly of the viral core have conventionally been considered to be cytoplasmic events. Here, we use an inducible nuclear pore complex blockade to monitor the kinetics of HIV-1 nuclear import and define the biochemical staging of these steps of infection. Surprisingly, we observe that nuclear import occurs with relatively rapid kinetics (<5 h) and precedes the completion of reverse transcription in target cells, demonstrating that reverse transcription is completed in the nucleus. We also observe that HIV-1 remains susceptible to the capsid-destabilizing compound PF74 following nuclear import, revealing that uncoating is completed in the nucleus. Additionally, we observe that certain capsid mutants are insensitive to a Nup62-mediated nuclear pore complex blockade in cells that potently block infection by wild-type capsid, demonstrating that HIV-1 can use distinct nuclear import pathways during infection. These studies collectively define the spatio-temporal staging of critical steps of HIV-1 infection and provide an experimental system to separate and thereby define the cytoplasmic and nuclear stages of infection by other viruses.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Poro Nuclear/metabolismo , Poro Nuclear/virología , Transcripción Reversa , Transporte Activo de Núcleo Celular , Linfocitos T CD4-Positivos/virología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Citoplasma/metabolismo , Células HEK293 , VIH-1/fisiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Indoles , Macrófagos/virología , Fenilalanina/análogos & derivados , Replicación Viral
2.
J Extracell Vesicles ; 9(1): 1789326, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32944176

RESUMEN

Extracellular vesicles (EVs) have been implicated in a wide variety of biological activities, have been implicated in the pathogenesis of numerous diseases, and have been proposed to serve as potential biomarkers of disease in human patients and animal models. However, characterization of EV populations is often performed using methods that do not account for the heterogeneity of EV populations and require comparatively large sample sizes to facilitate analysis. Here, we describe an imaging-based method that allows for the multiplexed characterization of EV populations at the single EV level following centrifugation of EV populations directly onto cover slips, allowing comprehensive analysis of EV populations with relatively small samples. We observe that canonical EV markers are present on subsets of EVs which differ substantially in a producer cell and cargo specific fashion, including differences in EVs containing different HIV-1 proteins previously reported to be incorporated into pathogenic EVs. We also describe a lectin binding assay to interrogate EVs based on their glycan content, which we observe to change in response to pharmacological modulation of secretory autophagy pathways. These studies collectively reveal that a multiplexed analysis of EV populations using fluorescent microscopy can reveal differences in specific EV populations that may be used to understand the biogenesis of specific EV populations and/or to interrogate small subsets of EVs of interest within larger EV populations in biological samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA