RESUMEN
This work assessed the Blue Carbon (C) stock in the seagrass meadows (Zostera noltei) of Ria de Aveiro coastal lagoon (Portugal), and evaluated its spatio-temporal trend over the 2003-2005 to 2013-2014 period. Zostera noltei spatial distribution, restricted to intertidal areas in 2014, was mapped by remote sensing using an unmanned aerial vehicle (UAV) and aerial photography. Zostera noltei biomass was also monitored in situ over a year and its Blue C stock was estimated. By 2014, intertidal meadows covered an area of 226 ± 4 ha and their Blue C stock ranged from 227 ± 6 to 453 ± 13 Mg C. Overall, Ria de Aveiro Z. noltei intertidal meadows increased in extent over the 2003-2005 to 2013-2014 period, corroborating the recent declining trend reversal observed in Europe and contrary to the global decline trend. This spatio-temporal shift might be related to a natural adjustment of the intertidal meadows to past human intervention in Ria de Aveiro, namely large-scale dredging activities, particularly in the 1996-1998 period, combined with the more accurate assessment performed in 2014 using the UAV. This recovery contributes to the effective increase of the Blue C stock in Ria de Aveiro and, ultimately, to supporting climate regulation and improving ecosystem health. However, major dredging activities are foreseen in the system's management plan, which can again endanger the recovery trend of Z. noltei intertidal meadows in Ria de Aveiro.
RESUMEN
Despite the recognised antiproliferative and antitumour properties of usnic acid, its therapeutic application has yet to be introduced. In fact, the high hepatotoxicity and low water solubility of usnic acid have somewhat restricted its practical use in anticancer therapy. The aim of this study was therefore to investigate the antitumour activity of usnic acid encapsulated into nanocapsules prepared with lactic co-glycolic acid polymer. Usnic acid-loaded nanocapsules were obtained using the interfacial deposition of a preformed polymer. The antitumour activity was confirmed on an ascitic tumour (Sarcoma-180) implanted in Swiss mice and estimated by means of the tumour inhibition. The results of antitumour activity confirmed that the encapsulation of usnic acid into PLGA-nanocapsules produced a 26.4% increase in tumour inhibition as compared with the standard free usnic acid treatment. Vacuolization of hepatocytes and a mild lymphocytic infiltration in portal spaces were observed in animals treated with free usnic acid. However, this hepatotoxicity was substantially reduced when animals were treated with usnic acid-loaded nanocapsules. No histological changes were noticed in the kidneys or spleen of animals treated either with usnic acid or usnic acid-loaded nanocapsules. These results suggest that nanoencapsulation may be a way of enabling usnic acid to be used in chemotherapy.