RESUMEN
Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.
Asunto(s)
Sensibilidad de Contraste/fisiología , Eliminación de Gen , Retina/enzimología , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Agudeza Visual/fisiología , Animales , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Estimulación Luminosa/métodosRESUMEN
After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.
Asunto(s)
Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/efectos de los fármacos , Serpinas/farmacología , Animales , Axones/fisiología , Línea Celular Tumoral , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa , Neuroprotección , Nervio Óptico , Ratas Wistar , Retina , Células Ganglionares de la Retina/metabolismo , Serpinas/metabolismoRESUMEN
Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of ß-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis. Herein, we review current knowledge of the therapeutic potential of mesenchymal stem cells and their extracellular vesicles for Alzheimer's disease, discussing the most recent findings in both preclinical and clinical trials as well as how advanced technologies have helped to overcome some limitations and contributed to stimulate the development of more effective treatments.
RESUMEN
Gangliosides, sialic acid-containing sphingolipids, are major constituents of neuronal membranes. According to the number of sialic acids and the structure of the oligosaccharide chain, gangliosides can be classified as simple or complex and grouped in different ganglio-series. Hundreds of gangliosides have been identified in vertebrate cells, with different expression patterns during development and related to several physiological processes, especially in the nervous system. While GD3 and its O-acetylated form, 9acGD3, are highly expressed in early developmental stages, GM1, GD1a, GD1b, and GT1b are the most abundant ganglioside species in the mature nervous system. Mutations in enzymes involved in ganglioside metabolism can lead to the accumulation of specific species, a condition termed gangliosidosis and usually marked by severe neurological impairment. Changes in ganglioside levels have also been described in several neurodegenerative diseases, such as Alzheimer's and Parkinson's. In this review, we summarized recent information about the roles of GD3, 9acGD3, GM1, GD1a, GD1b, GT1b, and other ganglioside species in nervous system development and regeneration, as well as clinical trials evaluating possible therapeutic applications of these molecules.
RESUMEN
BACKGROUND: Optic-nerve injury results in impaired transmission of visual signals to central targets and leads to the death of retinal ganglion cells (RGCs) and irreversible vision loss. Therapies with mesenchymal stem cells (MSCs) from different sources have been used experimentally to increase survival and regeneration of RGCs. METHODS: We investigated the efficacy of human umbilical Wharton's jelly-derived MSCs (hWJ-MSCs) and their extracellular vesicles (EVs) in a rat model of optic nerve crush. RESULTS: hWJ-MSCs had a sustained neuroprotective effect on RGCs for 14, 60, and 120 days after optic nerve crush. The same effect was obtained using serum-deprived hWJ-MSCs, whereas transplantation of EVs obtained from those cells was ineffective. Treatment with hWJ-MSCs also promoted axonal regeneration along the optic nerve and reinnervation of visual targets 120 days after crush. CONCLUSIONS: The observations showed that this treatment with human-derived MSCs promoted sustained neuroprotection and regeneration of RGCs after optic nerve injury. These findings highlight the possibility to use cell therapy to preserve neurons and to promote axon regeneration, using a reliable source of human MSCs.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Ganglionares de la Retina , Animales , Axones , Supervivencia Celular , Humanos , Regeneración Nerviosa , Nervio Óptico , RatasRESUMEN
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3-5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1ß expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.