Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artif Organs ; 48(2): 141-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018258

RESUMEN

BACKGROUND: The reactivity of blood with non-endothelial surface is a challenge for long-term Ventricular Assist Devices development, usually made with pure titanium, which despite of being inert, low density and high mechanical resistance it does not avoid the thrombogenic responses. Here we tested a modification on the titanium surface with Laser Induced Periodic Surface Structures followed by Diamond Like Carbon (DLC) coating in different thicknesses to customize the wettability profile by changing the surface energy of the titanium. METHODS: Four different surfaces were proposed: (1) Pure Titanium as Reference Material (RM), (2) Textured as Test Sample (TS), (3) Textured with DLC 0.3µm as (TSA) and (4) Textured with 2.4µm DLC as (TSB). A single implant was positioned in the abdominal aorta of Wistar rats and the effects of hemodynamic interaction were evaluated without anticoagulant drugs. RESULTS: After twelve weeks, the implants were extracted and subjected to qualitative analysis by Scanning Electron Microscopy under low vacuum and X-ray Energy Dispersion. The regions that remained in contact with the wall of the aorta showed encapsulation of the endothelial tissue. TSB implants, although superhydrophilic, have proven that the DLC coating inhibits the adhesion of biological material, prevents abrasive wear and delamination, as observed in the TS and TSA implants. Pseudo- neointimal layers were heterogeneously identified in higher concentration on Test Surfaces.


Asunto(s)
Carbono , Titanio , Ratas , Animales , Propiedades de Superficie , Titanio/química , Ratas Wistar , Ensayo de Materiales , Carbono/química , Aorta , Materiales Biocompatibles Revestidos/química
2.
Artif Organs ; 44(8): 797-802, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31437303

RESUMEN

Congestive heart failure is a pathology of global incidence that affects millions of people worldwide. When the heart weakens and fails to pump blood at physiological rates commensurate with the requirements of tissues, two main alternatives are cardiac transplant and ventricular assist devices (VADs). This article presents the design strategy for development of a customized VAD electromagnetic actuator. Electromagnetic actuator is a brushless direct current motor customized to drive the pump impeller by permanent magnets located in rotor-stator coupling. In this case, ceramic pivot bearings support the VAD impeller. Electronic circuitry controls rotation switching current in stator coils. The proposed methodology consisted of analytical numerical design, tridimensional computational modeling, numerical simulations using Maxwell software, actuator prototyping, and validation in the dynamometer. The axial flow actuator was chosen by its size and high power density compared to the radial flow type. First step consisted of estimating the required torque to drive the pump. Torque was estimated at 2100 rpm and mean current of 0.5 A. Numerical analysis using finite element method mapped vectors and fields to build stator coils and actuator assemblage. After tests in the dynamometer, experimental results were compared with numerical simulation and validated the proposed model. In conclusion, the proposed methodology for designing of VAD electromechanical actuator was considered satisfactory in terms of data consistency, feasibility, and reliability.


Asunto(s)
Corazón Auxiliar , Diseño de Prótesis , Fenómenos Electromagnéticos , Humanos , Modelos Biológicos , Diseño de Prótesis/métodos , Torque
3.
Artif Organs ; 44(8): 779-784, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31612546

RESUMEN

This study presents an assessment for long-term use of the apical aortic blood pump (AABP), focusing on wear reduction in the bearing system. AABP is a centrifugal left ventricle assist device initially developed for bridge to transplant application. To analyze AABP performance in long-term applications, a durability test was performed. This test indicated that wear in the lower bearing pivot causes device failure in long-term. A wear test in the bearing system was conducted to demonstrate the correlation of the load in the bearing system with wear. Results from the wear test showed a direct correlation between load and wear at the lower bearing pivot. In order to reduce load, thus reducing wear, a new stator topology has been proposed. In this topology, a radial stator would replace the axial stator previously used. Another durability test with the new stator has accounted twice the time without failure when compared with the original model.


Asunto(s)
Corazón Auxiliar , Aorta/fisiología , Análisis de Falla de Equipo , Corazón Auxiliar/efectos adversos , Humanos , Diseño de Prótesis , Falla de Prótesis , Factores de Tiempo
4.
Artif Organs ; 37(11): 973-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24219301

RESUMEN

Fractures in stents are usually detected by visual analysis, which may be affected by the presence of noise and image deformations. The lack of research into automating stent fracture detection has motivated this work, in which techniques are developed to facilitate diagnosis by observation (Image Delineation Algorithm) and, when possible, to point out areas of possible fractures (Fracture Detection Algorithm). The use of classical elements and the development of additional computational techniques contributed to the process of image analysis, providing a possible way to aid medical diagnosis. The developed algorithms are applied to image samples from femoropopliteal arteries, and the results are compared to those of medical diagnosis. As a result, aside from the improvement of image display, a kappa concordance index of 0.878 for the detection of fractures confirms the method as satisfactory, with very good agreement with medical diagnosis.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Falla de Prótesis , Stents , Arterias/cirugía , Humanos
5.
Artif Organs ; 32(4): 334-41, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18370950

RESUMEN

This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (São Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politécnica of São Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.


Asunto(s)
Corazón Auxiliar , Hemorreología , Magnetismo , Centrifugación , Diseño de Equipo , Humanos , Ensayo de Materiales , Modelos Teóricos , Proyectos Piloto , Rotación
6.
Artif Organs ; 32(4): 349-54, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18370952

RESUMEN

This work presents the initial studies and the proposal for a cardiovascular system electro-fluid-dynamic simulator to be applied in the development of left ventricular assist devices (LVADs). The simulator, which is being developed at University Sao Judas Tadeu and at Institute Dante Pazzanese of Cardiology, is composed of three modules: (i) an electrical analog model of the cardiovascular system operating in the PSpice electrical simulator environment; (ii) an electronic controller, based on laboratory virtual instrumentation engineering workbench (LabVIEW) acquisition and control tool, which will act over the physical simulator; and (iii) the physical simulator: a fluid-dynamic equipment composed of pneumatic actuators and compliance tubes for the simulation of active cardiac chambers and big vessels. The physical simulator (iii) is based on results obtained from the electrical analog model (i) and physiological parameters.


Asunto(s)
Simulación por Computador , Corazón Auxiliar , Hemorreología , Modelos Cardiovasculares , Fenómenos Biomecánicos , Vasos Sanguíneos/fisiología , Diseño de Equipo , Humanos , Proyectos Piloto , Función Ventricular
7.
Rev Bras Cir Cardiovasc ; 22(2): 224-34, 2007.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-17992328

RESUMEN

INTRODUCTION: This paper addresses an original project that encompasses the conception, development and clinical application of a helical bypass pump called the Spiral Pump, that uses the association of centrifugal and axial propulsion forces based de the Archimedes principle. This project has obtained a Brazilian Patent and an International Preliminary Report, defining it as an invention. METHODS: The aim of this work was to evaluate the hemodynamic capacity and the impact of its application on blood cells by means of experimental in vitro tests, including hydrodynamic efficiency, effect on hemolysis and flow visualization. Moreover, in vivo experimental tests were carried out on lambs that were submitted to cardiopulmonary bypass for six hours and in 43 patients submitted to heart bypass surgery using the Spiral Pump. RESULTS: When the rotor-plastic casing gap was 1.5mm, the flow generated was nearly 9 L/min, the pressure was greater than 400 mmHg at 1500 rpm, and the normalized hemolytic indexes were not greater than 0.0375 g/100L in high-flow and pressure conditions. Additionally, by the flow visualization techniques, stagnation was not seen inside the pump nor was turbulence identified at the entrance or exit of the pump, or at the ends of the spindles. In the in vivo tests using cardiopulmonary bypasses for 6 hours in lambs, the pump maintained adequate pressure rates and the free hemoglobin levels ranged between 16.36 mg% and 44.90 mg%. Evaluating the results of the 43 patients who used this pump in heart bypass operations we observed that the free hemoglobin ranged from 9.34 mg% before to 44.16 mg% after surgery, the serum fibrinogen was from 236.65 mg% to 547.26mg%, platelet blood count from 152,465 to 98,139 and the lactic dehydrogenase from 238.12mg% to 547.26mg%. The Activated Coagulation Time was close to 800 seconds during the bypass. CONCLUSION: The Spiral Pump was very effective in generating adequate flow and pressure and caused no excessive harm to the blood cells.


Asunto(s)
Circulación Extracorporea/instrumentación , Cardiopatías/cirugía , Corazón Auxiliar/normas , Hemólisis , Análisis de Varianza , Animales , Materiales Biocompatibles , Velocidad del Flujo Sanguíneo , Brasil , Diseño de Equipo , Seguridad de Equipos , Corazón Artificial , Humanos , Modelos Cardiovasculares , Patentes como Asunto , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA