RESUMEN
Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Ecosistema , Humanos , Energía Renovable , Cambio SocialRESUMEN
Ecosystem restoration is an important means to address global sustainability challenges. However, scientific and policy discourse often overlooks the social processes that influence the equity and effectiveness of restoration interventions. In the present article, we outline how social processes that are critical to restoration equity and effectiveness can be better incorporated in restoration science and policy. Drawing from existing case studies, we show how projects that align with local people's preferences and are implemented through inclusive governance are more likely to lead to improved social, ecological, and environmental outcomes. To underscore the importance of social considerations in restoration, we overlay existing global restoration priority maps, population, and the Human Development Index (HDI) to show that approximately 1.4 billion people, disproportionately belonging to groups with low HDI, live in areas identified by previous studies as being of high restoration priority. We conclude with five action points for science and policy to promote equity-centered restoration.
RESUMEN
This perspective recognizes the seminal Ambio articles of Sombroek et al. (1993), Turner et al. (1994) and Brussaard et al. (1997), identifying their individual and collective role in laying the ground work for a global change research agenda on land and its human use through increased understanding of terrestrial ecosystem dynamics and global change, and furthering nascent interdisciplinary efforts within the global change science community to better understand the 'human driving forces' of change. From these efforts, land system science, as a systemic science focused on complex socio-ecological interactions around land use and associated trade-offs and synergies, emerges as an 'interdiscipline' challenged to better understand land systems as the 'meeting ground' for multiple claims on land for biodiversity, carbon, livelihoods, food production among others, and support pathways to sustainability for people and nature.