Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(1): 1-3, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021051

RESUMEN

The role of folate-dependent one carbon (1C) metabolism in CD4+ T cell polarization is incompletely understood. In this issue of Immunity, Sugiura et al. (2021) provide evidence that blocking the 1C metabolic enzyme MTHFD2 may curb pro-inflammatory CD4+ T cells, while redirecting them toward a regulatory T cell phenotype.


Asunto(s)
Ácido Fólico , Activación de Linfocitos , Diferenciación Celular
2.
Immunity ; 55(11): 1981-1992, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351373

RESUMEN

Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.


Asunto(s)
Factores de Transcripción Forkhead , Linfocitos T Reguladores , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2 , Inmunoterapia , Homeostasis
3.
Immunity ; 54(7): 1543-1560.e6, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34004141

RESUMEN

Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/inmunología , Proliferación Celular/fisiología , Linfocitos T Reguladores/inmunología , Adulto , Autoinmunidad/inmunología , Células Cultivadas , Femenino , Homeostasis/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Masculino , Esclerosis Múltiple Recurrente-Remitente/inmunología , Factor 2 Relacionado con NF-E2/inmunología
4.
Nat Immunol ; 22(11): 1355-1358, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663980
5.
Trends Immunol ; 42(1): 18-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33277181

RESUMEN

Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.


Asunto(s)
Inmunidad Adaptativa/inmunología , COVID-19/inmunología , Inmunidad Innata/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , COVID-19/prevención & control , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Memoria Inmunológica/inmunología , Modelos Inmunológicos , SARS-CoV-2/fisiología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
6.
Cell Mol Life Sci ; 79(5): 273, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35503137

RESUMEN

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors (i) reduce cardiovascular and renal events in patients with and without type 2 diabetes (T2D). However, the underlying mechanisms are debated. Low-grade inflammation (LGI) is a key driver of vascular complications, suggested to be attenuated by SGLT-2i in animal models. Based on a specific working hypothesis, here we investigated the net effect of SGLT-2i on LGI in patients with T2D and the possible underlying mechanism. We enrolled patients with T2D treated either with a stable therapy with SGLT-2i or with other glucose-lowering drugs (GLD) (n = 43 per group after matching for a range of pro-inflammatory variables), and tested hs-CRP and interleukin (IL)-6 as primary variables of interest. Patients treated with SGLT-2i had lower circulating levels of IL-6, a prototypical marker of LGI, but also of uric acid and fasting insulin, compared with patients treated with other GLD. Then, to explore whether uric acid and insulin might mediate the effect of SGLT-2i on IL-6, we tested physiologically pertinent doses of these two molecules (i.e. 0.5 mM uric acid and 1 nM insulin) in two in vitro models of LGI, i.e. monocytes (THP-1) treated with LPS and endothelial cells (HUVEC) exposed to hyperglycaemia. Results from in vitro models supported a pro-inflammatory role for uric acid and its combination with insulin in monocytes and for uric acid alone in hyperglycaemia-stimulated endothelial cells. On the contrary, we observed no drug-intrinsic, anti-inflammatory effect for dapagliflozin, empagliflozin, and canagliflozin in the same models. Overall, these results suggest that SGLT-2i possess a tangible activity against LGI, an effect possibly mediated by their ability to lower uric acid and insulin concentrations and that juxtaposes other proposed mechanisms in explaining the observed benefit of this class on cardiovascular and renal endpoints.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Endoteliales , Glucosa , Humanos , Hiperglucemia/complicaciones , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina , Interleucina-6 , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Ácido Úrico/uso terapéutico
7.
Diabetologia ; 65(8): 1390-1397, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610521

RESUMEN

AIMS/HYPOTHESIS: We assessed the levels of blood circulating immune checkpoint molecules (ICMs) at diagnosis of type 1 diabetes, and determined their association with the risk of developing an additional autoimmune disorder over time. METHODS: Children with new-onset type 1 diabetes (n = 143), without biological and/or clinical signs of additional autoimmune disorders, and healthy children (n = 75) were enrolled, and blood circulating levels of 14 ICMs were measured. The children with type 1 diabetes were divided into two groups on the basis of the development of an additional autoimmune disease in the 5 years after diabetes onset. Differences in soluble ICM levels between the groups were assessed, and a Cox regression analysis was used to evaluate their association with the risk of development of an additional autoimmune disease over time. To validate the data, circulating ICMs were measured in an independent cohort of 60 children with new-onset type 1 diabetes stratified into two groups. RESULTS: We found that the levels of circulating ICMs were significantly higher in children with new-onset diabetes compared with healthy children. Further, we observed that children with type 1 diabetes who developed a second autoimmune disease over time (T1D-AAD+ children) had higher levels of soluble ICMs than children with type 1 diabetes who did not (T1D-AAD- children). Cox regression models revealed that high circulating levels of CD137/4-1BB and PD-1 molecules at diabetes diagnosis were associated with the risk of developing an additional autoimmune disease in both type 1 diabetes cohorts. CONCLUSIONS/INTERPRETATION: Our findings suggest that soluble CD137/4-1BB and PD-1 molecules may be used as prognostic biomarkers in children with type 1 diabetes, and may pave the way for novel immunological screening at diabetes onset, allowing early identification of children at higher risk of developing other autoimmune conditions over time.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Niño , Estudios de Cohortes , Humanos , Proteínas de Punto de Control Inmunitario , Receptor de Muerte Celular Programada 1
8.
Immunology ; 167(4): 451-470, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36043705

RESUMEN

Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage-specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as 'epigenetic memory', dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as 'trained immunity'. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Histonas/metabolismo , Diferenciación Celular/genética , Inmunidad , Inmunidad Innata
9.
Diabetes Metab Res Rev ; 38(1): e3476, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018307

RESUMEN

AIMS: Diabetes is emerging as a risk factor for coronavirus disease (COVID)-19 prognosis. However, contradictory findings have been reported regarding the impact of glycaemic control on COVID-19 outcome. The aim of this meta-analysis was to explore the impact of hospital pre-admission or at-admission values of HbA1c on COVID-19 mortality or worsening in patients with diabetes. MATERIALS AND METHODS: We searched PubMed, Embase and Scopus up to 30th December 2020. Eligibility criteria for study selection were the following: (1)enrolling patients with any form of diabetes mellitus and hospitalized for COVID-19 and (2) reporting data regarding HbA1c values before infection or at hospital admission in relation to COVID-19 mortality or worsening. Descriptive statistics, HbA1c values, odds ratios (ORs) and hazard ratios were extracted from seven observational studies and generic inverse variance (random effects) of OR was used to estimate the effect of HbA1c on COVID-19 outcome. RESULTS: HbA1c was linearly associated with an increased COVID-19 mortality or worsening when considered as a continuous variable (OR 1.01 [1.01, 1.01]; p < 0.00001). Similarly, when analysing studies providing the number of events according to the degree of glycaemic control among various strata, a significantly increased risk was observed with poor glycaemic control (OR 1.15 [1.11, 1.19]; p < 0.00001), a result corroborated by sensitivity analysis. CONCLUSIONS: Notwithstanding the large heterogeneity in study design and patients' characteristics in the few available studies, data suggest that patients with diabetes and poor glycaemic control before infection might have an increased risk of COVID-19 related mortality.


Asunto(s)
COVID-19 , Hemoglobina Glucada , COVID-19/mortalidad , Diabetes Mellitus , Hemoglobina Glucada/análisis , Humanos , Hiperglucemia , Medición de Riesgo
10.
Mol Biol Rep ; 49(9): 9071-9077, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35733059

RESUMEN

BACKGROUND: Dried blood spot (DBS) testing is a well-known method of bio-sampling by which blood samples are blotted and dried on filter paper. The dried samples can then be analyzed by several techniques such as DNA amplification and HPLC. We have developed a non-invasive sampling followed by an alternative protocol for genomic DNA extraction from a drop of blood adsorbed on paper support. This protocol consists of two separate steps: (1) organic DNA extraction from the DBS, followed by (2) DNA amplification by polymerase chain reaction (PCR). The PCR-restriction fragment length polymorphism (PCR-RFLP) is an advantageous and simple approach to detect single nucleotide polymorphisms (SNPs). RESULTS: We have evaluated the efficiency of our method for the extraction of genomic DNA from DBS by testing its performance in genotyping mouse models of obesity and herein discuss the specificity and feasibility of this novel procedure. CONCLUSIONS: Our protocol is easy to perform, fast and inexpensive and allows the isolation of pure DNA from a tiny amount of sample.


Asunto(s)
ADN , Técnicas de Genotipaje , Animales , ADN/análisis , Genotipo , Ratones , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293181

RESUMEN

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Transportador 2 de Sodio-Glucosa , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Inflamasomas , Reposicionamiento de Medicamentos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Envejecimiento , Glucosa/uso terapéutico , Serina-Treonina Quinasas TOR , Sodio , Cetonas/uso terapéutico , Ácidos Grasos/uso terapéutico
12.
Diabetologia ; 63(12): 2699-2712, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32728892

RESUMEN

AIMS/HYPOTHESIS: We aimed to analyse the association between plasma circulating microRNAs (miRNAs) and the immunometabolic profile in children with type 1 diabetes and to identify a composite signature of miRNAs/immunometabolic factors able to predict type 1 diabetes progression. METHODS: Plasma samples were obtained from children at diagnosis of type 1 diabetes (n = 88) and at 12 (n = 32) and 24 (n = 30) months after disease onset and from healthy control children with similar sex and age distribution (n = 47). We quantified 60 robustly expressed plasma circulating miRNAs by quantitative RT-PCR and nine plasma immunometabolic factors with a recognised role at the interface of metabolic and immune alterations in type 1 diabetes. Based on fasting C-peptide loss over time, children with type 1 diabetes were stratified into the following groups: those who had lost >90% of C-peptide compared with diagnosis level; those who had lost <10% of C-peptide; those showing an intermediate C-peptide loss. To evaluate the modulation of plasma circulating miRNAs during the course of type 1 diabetes, logistic regression models were implemented and the correlation between miRNAs and immunometabolic factors was also assessed. Results were then validated in an independent cohort of children with recent-onset type 1 diabetes (n = 18). The prognostic value of the identified plasma signature was tested by a neural network-based model. RESULTS: Plasma circulating miR-23~27~24 clusters (miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27a-3p and miR-27b-3p) were upmodulated upon type 1 diabetes progression, showed positive correlation with osteoprotegerin (OPG) and were negatively correlated with soluble CD40 ligand, resistin, myeloperoxidase and soluble TNF receptor in children with type 1 diabetes but not in healthy children. The combination of plasma circulating miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27b-3p and OPG, quantified at disease onset, showed a significant capability to predict the decline in insulin secretion 12 months after disease diagnosis in two independent cohorts of children with type 1 diabetes. CONCLUSIONS/INTERPRETATIONS: We have pinpointed a novel miR-23a-3p/miR-23b-3p/miR-24-3p/miR-27b-3p/OPG plasma signature that may be developed into a novel blood-based method to better stratify patients with type 1 diabetes and predict C-peptide loss.


Asunto(s)
Péptido C/sangre , Diabetes Mellitus Tipo 1/sangre , Complicaciones de la Diabetes/sangre , Humanos , MicroARNs/metabolismo , Osteoprotegerina/sangre
13.
Diabetes Obes Metab ; 22(9): 1696-1700, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32394604

RESUMEN

Residual inflammatory risk (RIR) is defined as persistent circulating levels of high sensitivity C-reactive protein (hs-CRP) >2 mg/L despite an optimal (<70 mg/dL) control of LDL-cholesterol (LDL-C) and represents an emerging risk factor for the development of cardiovascular events in patients at high risk of atherosclerosis. Sparse data are available regarding the prevalence of RIR in patients with type 2 diabetes (T2D) and the clinical variables associated with hs-CRP elevation. Here, we report data from a well-characterized cohort of patients with T2D (n = 511) stratified for statins use, LDL-C goal attainment and prevalent T2D complications. Statins use and having at-target LDL-C partially affect the number of patients with inflammatory risk when compared with the whole T2D population, with an RIR prevalence of 39.2%. Among the spectra of complications, only patients with nephropathy had a higher prevalence of inflammatory risk. Total cholesterol, non-HDL-cholesterol, triglycerides, body mass index and waist-hip ratio were associated with hs-CRP, with an increased magnitude in at-target patients. Conversely, glucose-related variables were strongly associated with hs-CRP only in at-target patients, overall suggesting glycaemic control, insulin resistance, non-LDL-C lipid variables and especially central obesity as possible contributors to RIR in patients with T2D and LDL-C <70 mg/dL.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteína C-Reactiva/análisis , HDL-Colesterol , LDL-Colesterol , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Prevalencia , Factores de Riesgo , Triglicéridos
14.
Semin Immunol ; 28(5): 491-504, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27720234

RESUMEN

The filed that links immunity and metabolism is rapidly expanding. The adipose tissue, by secreting a series of immune regulators called adipokines, represents the common mediator linking metabolic processes and immune system functions. The dysregulation of adipokine secretion, occurring in obese individuals or in conditions of malnutrition or dietary restriction, affects the activity of immune cells resulting in inflammatory autoimmune responses or increased susceptibility to infectious diseases. Alterations of cell metabolism that characterize several autoimmune diseases strongly support the idea that the immune tolerance is also regulated by metabolic pathways. The comprehension of the molecular mechanisms underlying these alterations may lead to the development of novel therapeutic strategies to control immune cell differentiation and function in conditions of autoimmunity.


Asunto(s)
Autoinmunidad , Metabolismo Energético , Tolerancia Inmunológica , Inmunidad , Adipoquinas/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Dieta , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Desnutrición/inmunología , Desnutrición/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Sobrepeso/inmunología , Sobrepeso/metabolismo
15.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375647

RESUMEN

Metabolic disorders such as obesity and type 2 diabetes (T2D) are considered the major risk factors for the development of cardiovascular diseases (CVD). Although the pathological mechanisms underlying the mutual development of obesity and T2D are difficult to define, a better understanding of the molecular aspects is of utmost importance to identify novel therapeutic targets. Recently, a class of non-coding RNAs, called microRNAs (miRNAs), are emerging as key modulators of metabolic abnormalities. There is increasing evidence supporting the role of intra- and extracellular miRNAs as determinants of the crosstalk between adipose tissues, liver, skeletal muscle and other organs, triggering the paracrine communication among different tissues. miRNAs may be considered as risk factors for CVD due to their correlation with cardiovascular events, and in particular, may be related to the most prominent risk factors. In this review, we describe the associations observed between miRNAs expression levels and the most common cardiovascular risk factors. Furthermore, we sought to depict the molecular aspect of the interplay between obesity and diabetes, investigating the role of microRNAs in the interorgan crosstalk. Finally, we discussed the fascinating hypothesis of the loss of protective factors, such as antioxidant defense systems regulated by such miRNAs.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , MicroARNs/genética , Obesidad/etiología , Interferencia de ARN , Adipogénesis/genética , Tejido Adiposo/metabolismo , Animales , Antioxidantes/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Perfilación de la Expresión Génica , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo
16.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940853

RESUMEN

Immune cell subsets and microRNAs have been independently proposed as type 1 diabetes (T1D) diagnostic and/or prognostic biomarkers. Here, we aimed to analyze the relationships between peripheral blood circulating immune cell subsets, plasmatic microRNAs, and T1D. Blood samples were obtained from both children with T1D at diagnosis and age-sex matched healthy controls. Then, immunophenotype assessed by flow cytometry was coupled with the quantification of 60 plasmatic microRNAs by quantitative RT-PCR. The associations between immune cell frequency, plasmatic microRNAs, and the parameters of pancreatic loss, glycemic control, and diabetic ketoacidosis were assessed by logistic regression models and correlation analyses. We found that the increase in specific plasmatic microRNAs was associated with T1D disease onset (let-7c-5p, let-7d-5p, let-7f-5p, let-7i-5p, miR-146a-5p, miR-423-3p, and miR-423-5p), serum C-peptide concentration (miR-142-5p and miR-29c-3p), glycated hemoglobin (miR-26a-5p and miR-223-3p) and the presence of ketoacidosis (miR-29c-3p) more strongly than the evaluated immune cell subset frequency. Some of these plasmatic microRNAs were shown to positively correlate with numbers of blood circulating B lymphocytes (miR-142-5p) and CD4+CD45RO+ (miR-146a-5p and miR-223-3p) and CD4+CD25+ cells (miR-423-3p and miR-223-3p) in children with T1D but not in healthy controls, suggesting a disease-specific microRNA association with immune dysregulation in T1D. In conclusion, our results suggest that, while blood co-circulating extracellular microRNAs and immune cell subsets may be biologically linked, microRNAs may better provide powerful information about T1D onset and severity.


Asunto(s)
Subgrupos de Linfocitos B , MicroARN Circulante/sangre , Diabetes Mellitus Tipo 1/sangre , Biomarcadores/sangre , Niño , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Masculino
17.
Cardiovasc Diabetol ; 18(1): 18, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30803440

RESUMEN

BACKGROUND: Impaired glucose tolerance (IGT) is a risk factor for the development of diabetes and related complications that ensue. Early identification of at-risk individuals might be beneficial to reduce or delay the progression of diabetes and its related complications. Recently, microRNAs emerged as potential biomarkers of diseases. The aim of the present study was to evaluate microRNA-21 as a potential biomarker for the risk of developing diabetes in adults with IGT and to investigate its downstream effects as the generation of reactive oxygen species (ROS), the induction of manganese-superoxide dismutase-2 (SOD2), and the circulating levels of 4-HNE (4-hydroxynonenal). METHODS: To evaluate the prognostic and predictive values of plasmatic microRNA-21 in identifying metabolic derangements, we tested a selected cohort (n = 115) of subjects enrolled in the DIAPASON Study, whom were selected on ADA criteria for 2hPG. Statistical analysis was performed using ANOVA or the Kruskal-Wallis test as appropriate. ROC curves were drawn for diagnostic accuracy of the tests; positive and negative predictive values were performed, and Youden's index was used to seek the cut-off optimum truncation point. ROS, SOD2 and 4-HNE were also evaluated. RESULTS: We observed significant upregulation of microRNA-21 in IGT and in T2D subjects, and microRNA-21 was positively correlated with glycaemic parameters. Diagnostic performance of microRNA-21 was high and accurate. We detected significant overproduction of ROS by electron paramagnetic resonance (EPR), significant accumulation of the lipid peroxidation marker 4-HNE, and defective SOD2 antioxidant response in IGT and newly diagnosed, drug-naïve T2D subjects. In addition, ROC curves demonstrated the diagnostic accuracy of markers used. CONCLUSIONS: our data demonstrate that microRNA-21 is associated with prediabetic status and exhibits predictive value for early detection of glucose imbalances. These data could provide novel clues for miR-based biomarkers to evaluate diabetes.


Asunto(s)
MicroARN Circulante/sangre , Diabetes Mellitus Tipo 2/sangre , Intolerancia a la Glucosa/sangre , MicroARNs/sangre , Estrés Oxidativo , Especies Reactivas de Oxígeno/sangre , Anciano , Aldehídos/sangre , Glucemia/metabolismo , MicroARN Circulante/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/genética , Diagnóstico Precoz , Femenino , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/diagnóstico , Intolerancia a la Glucosa/genética , Humanos , Peroxidación de Lípido , Masculino , MicroARNs/genética , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Superóxido Dismutasa/sangre , Regulación hacia Arriba
18.
J Biol Chem ; 292(7): 2903-2915, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28077577

RESUMEN

Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.


Asunto(s)
Enfermedades Autoinmunes/genética , Linfocitos T CD4-Positivos/citología , Vesículas Extracelulares/metabolismo , MicroARNs/genética , Subgrupos de Linfocitos T , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Etanercept/uso terapéutico , Humanos , MicroARNs/sangre , Psoriasis/sangre , Psoriasis/tratamiento farmacológico , Psoriasis/genética
19.
Brief Bioinform ; 17(2): 204-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26238539

RESUMEN

The high-throughput analysis of microRNAs (miRNAs) circulating within the blood of healthy and diseased individuals is an active area of biomarker research. Whereas quantitative real-time reverse transcription polymerase chain reaction (qPCR)-based methods are widely used, it is yet unresolved how the data should be normalized. Here, we show that a combination of different algorithms results in the identification of candidate reference miRNAs that can be exploited as normalizers, in both discovery and validation phases. Using the methodology considered here, we identify normalizers that are able to reduce nonbiological variation in the data and we present several case studies, to illustrate the relevance in the context of physiological or pathological scenarios. In conclusion, the discovery of stable reference miRNAs from high-throughput studies allows appropriate normalization of focused qPCR assays.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/sangre , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Biomarcadores/sangre , Perfilación de la Expresión Génica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , MicroARNs/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
J Biol Chem ; 291(14): 7221-8, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26887954

RESUMEN

The immune system has evolved to protect multicellular organisms from the attack of a variety of pathogens. To exert this function efficiently, the system has developed the capacity to coordinate the function of different cell types and the ability to down-modulate the response when the foreign attack is over. For decades, immunologists believed that these two characteristics were primarily related to cytokine/chemokine-based communication and cell-to-cell direct contact. More recently, it has been shown that immune cells also communicate by transferring regulatory RNAs, microRNAs in particular, from one cell to the other. Several studies have suggested a functional role of extracellular regulatory RNAs in cell-to-cell communication in different cellular contexts. This minireview focuses on the potential role of extracellular RNA transfer in the regulation of adaptive immune response, also contextualizing it in a broader field of what is known of cell-free RNAs in communication among different organisms in the evolutionary scale.


Asunto(s)
Inmunidad Adaptativa/fisiología , Comunicación Celular/inmunología , MicroARNs/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA