Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Antimicrob Agents Chemother ; 67(3): e0075922, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36815840

RESUMEN

Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 µg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Animales , Antifúngicos/uso terapéutico , Cryptococcus neoformans/efectos de los fármacos , Larva/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Factores de Virulencia/metabolismo
2.
J Antimicrob Chemother ; 78(4): 1092-1101, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36881722

RESUMEN

OBJECTIVES: To develop alginate nanoparticles functionalized with polysorbate 80 (P80) as miltefosine carriers for brain targeting in the oral treatment of cryptococcal meningitis. METHODS: Miltefosine-loaded alginate nanoparticles functionalized or not with P80 were produced by an emulsification/external gelation method and the physicochemical characteristics were determined. The haemolytic activity and cytotoxic and antifungal effects of nanoparticles were assessed in an in vitro model of the blood-brain barrier (BBB). A murine model of disseminated cryptococcosis was used for testing the efficacy of oral treatment with the nanoparticles. In addition, serum biomarkers were measured for toxicity evaluation and the nanoparticle biodistribution was analysed. RESULTS: P80-functionalized nanoparticles had a mean size of ∼300 nm, a polydispersity index of ∼0.4 and zeta potential around -50 mV, and they promoted a sustained drug release. Both nanoparticles were effective in decreasing the infection process across the BBB model and reduced drug cytotoxicity and haemolysis. In in vivo cryptococcosis, the oral treatment with two doses of P80 nanoparticles reduced the fungal burden in the brain and lungs, while the non-functionalized nanoparticles reduced fungal amount only in the lungs, and the free miltefosine was not effective. In addition, the P80-functionalization improved the nanoparticle distribution in several organs, especially in the brain. Finally, treatment with nanoparticles did not cause any toxicity in animals. CONCLUSIONS: These results support the potential use of P80-functionalized alginate nanoparticles as miltefosine carriers for non-toxic and effective alternative oral treatment, enabling BBB translocation and reduction of fungal infection in the brain.


Asunto(s)
Criptococosis , Meningitis Criptocócica , Nanopartículas , Ratones , Animales , Meningitis Criptocócica/tratamiento farmacológico , Polisorbatos/uso terapéutico , Alginatos/uso terapéutico , Distribución Tisular , Encéfalo , Criptococosis/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico
3.
Am J Physiol Heart Circ Physiol ; 321(3): H542-H557, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34296965

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal cardiopulmonary disease characterized by increased vascular cell proliferation with apoptosis resistance and occlusive remodeling of the small pulmonary arteries. The Notch family of proteins subserves proximal signaling of an evolutionarily conserved pathway that effects cell proliferation, fate determination, and development. In endothelial cells (ECs), Notch receptor 2 (Notch2) was shown to promote endothelial apoptosis. However, a pro- or antiproliferative role for Notch2 in pulmonary endothelial proliferation and ensuing PAH is unknown. We postulated that suppressed Notch2 signaling drives pulmonary endothelial proliferation in the context of PAH. We observed that levels of Notch2 are ablated in lungs from PAH subjects compared with non-PAH controls. Notch2 expression was attenuated in human pulmonary artery endothelial cells (hPAECs) exposed to vasoactive stimuli including hypoxia, TGF-ß, ET-1, and IGF-1. Notch2-deficient hPAECs activated Akt, Erk1/2, and antiapoptotic protein Bcl-2 and reduced levels of p21cip and Bax associated with increased EC proliferation and reduced apoptosis. In addition, Notch2 suppression elicited a paradoxical activation of Notch1 and canonical Notch target gene Hes1, Hey1, and Hey2 transcription. Furthermore, reduction in Rb and increased E2F1 binding to the Notch1 promoter appear to explain the Notch1 upregulation. Yet, when Notch1 was decreased in Notch2-suppressed cells, the wound injury response was augmented. In aggregate, our results demonstrate that loss of Notch2 in hPAECs derepresses Notch1 and elicits EC hallmarks of PAH. Augmented EC proliferation upon Notch1 knockdown points to a context-dependent role for Notch1 and 2 in endothelial cell homeostasis.NEW & NOTEWORTHY This study demonstrates a previously unidentified role for Notch2 in the maintenance of lung vascular endothelial cell quiescence and pulmonary artery hypertension (PAH). A key novel finding is that Notch2 suppression activates Notch1 via Rb-E2F1-mediated signaling and induces proliferation and apoptosis resistance in human pulmonary artery endothelial cells. Notably, PAH patients show reduced levels of endothelial Notch2 in their pulmonary arteries, supporting Notch2 as a fundamental driver of PAH pathogenesis.


Asunto(s)
Proliferación Celular , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Receptor Notch2/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células Endoteliales/fisiología , Endotelio Vascular/citología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/genética , Proteínas Represoras/metabolismo , Factor de Transcripción HES-1/metabolismo
4.
Fungal Genet Biol ; 133: 103267, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31513917

RESUMEN

Trichosporon asahii has recently been recognized as an emergent fungal pathogen able to cause invasive infections in neutropenic cancer patients as well as in critically ill patients submitted to invasive medical procedures and broad-spectrum antibiotic therapy. T. asahii is the main pathogen associated with invasive trichosporonosis worldwide. Treatment of patients with invasive trichosporonosis remains a controversial issue, but triazoles are mentioned by most authors as the best first-line antifungal therapy. There is mounting evidence supporting the claim that fluconazole (FLC) resistance in T. asahii is emerging worldwide. Since 2000, 15 publications involving large collections of T. asahii isolates described non-wild type isolates for FLC and/or voriconazole. However, very few papers have addressed the epidemiology and molecular mechanism of antifungal resistance in Trichosporon spp. Data available suggest that continuous exposure to azoles can induce mutations in the ERG11 gene, resulting in resistance to this class of antifungal drugs. A recent report characterizing T. asahii azole-resistant strains found several genes differentially expressed and highly mutated, including genes related to the Target of Rapamycin (TOR) pathway, indicating that evolutionary modifications on this pathway induced by FLC stress may be involved in developing azole resistance. Finally, we provided new data suggesting that hyperactive efflux pumps may play a role as drug transporters in FLC resistant T. asahii strains.


Asunto(s)
Antifúngicos/uso terapéutico , Triazoles/uso terapéutico , Trichosporon/efectos de los fármacos , Tricosporonosis/tratamiento farmacológico , Humanos
5.
Clin Sci (Lond) ; 131(15): 2019-2035, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522681

RESUMEN

Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e. aberrant vascular remodeling and occlusion. However, little is known of the molecular mechanisms responsible for endothelial proliferation, a root cause of PAH-associated vascular remodeling. Lung tissue specimens from PAH and non-PAH patients and hypoxia-exposed human pulmonary artery endothelial cells (ECs) (HPAEC) were assessed for mRNA and protein expression. Reactive oxygen species (ROS) were measured using cytochrome c and Amplex Red assays. Findings demonstrate for the first time an up-regulation of NADPH oxidase 1 (Nox1) at the transcript and protein level in resistance vessels from PAH compared with non-PAH patients. This coincided with an increase in ROS production and expression of bone morphogenetic protein (BMP) antagonist Gremlin1 (Grem1). In HPAEC, hypoxia induced Nox1 subunit expression, assembly, and oxidase activity leading to elevation in sonic hedgehog (SHH) and Grem1 expression. Nox1 gene silencing abrogated this cascade. Moreover, loss of either Nox1, SHH or Grem1 attenuated hypoxia-induced EC proliferation. Together, these data support a Nox1-SHH-Grem1 signaling axis in pulmonary vascular endothelium that is likely to contribute to pathophysiological endothelial proliferation and the progression of PAH. These findings also support targeting of Nox1 as a viable therapeutic option to combat PAH.


Asunto(s)
Proliferación Celular , Hipertensión Pulmonar/enzimología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , NADPH Oxidasas/metabolismo , Adulto , Anciano , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Persona de Mediana Edad , NADPH Oxidasa 1 , NADPH Oxidasas/genética , Arteria Pulmonar/enzimología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
Antioxidants (Basel) ; 12(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36670936

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare yet devastating and incurable disease with few treatment options. The underlying mechanisms of PAH appear to involve substantial cellular proliferation and vascular remodeling, causing right ventricular overload and eventual heart failure. Recent evidence suggests a significant seminal role of the pulmonary endothelium in the initiation and promotion of PAH. Our previous work identified elevated reactive oxygen species (ROS)-producing enzyme NADPH oxidase 1 (NOX1) in human pulmonary artery endothelial cells (HPAECs) of PAH patients promoting endothelial cell proliferation in vitro. In this study, we interrogated chemokine CXCL12's (aka SDF-1) role in EC proliferation under the control of NOX1 and specificity protein 1 (Sp1). We report here that NOX1 can drive hypoxia-induced endothelial CXCL12 expression via the transcription factor Sp1 leading to HPAEC proliferation and migration. Indeed, NOX1 drove hypoxia-induced Sp1 activation, along with an increased capacity of Sp1 to bind cognate promoter regions in the CXCL12 promoter. Sp1 activation induced elevated expression of CXCL12 in hypoxic HPAECs, supporting downstream induction of expression at the CXCL12 promoter via NOX1 activity. Pathological levels of CXCL12 mimicking those reported in human PAH patient serum restored EC proliferation impeded by specific NOX1 inhibitor. The translational relevance of our findings is highlighted by elevated NOX1 activity, Sp1 activation, and CXCL12 expression in explanted lung samples from PAH patients compared to non-PAH controls. Analysis of phosphofructokinase, glucose-6-phosphate dehydrogenase, and glutaminase activity revealed that CXCL12 induces glutamine and glucose metabolism, which are foundational to EC cell proliferation. Indeed, in explanted human PAH lungs, demonstrably higher glutaminase activity was detected compared to healthy controls. Finally, infusion of recombinant CXCL12 into healthy mice amplified pulmonary arterial pressure, right ventricle remodeling, and elevated glucose and glutamine metabolism. Together these data suggest a central role for a novel NOX1-Sp1-CXCL12 pathway in mediating PAH phenotype in the lung endothelium.

7.
Mol Cell Endocrinol ; 555: 111725, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35868425

RESUMEN

The pancreatic ß cells circadian clock plays a relevant role in glucose metabolism. NADPH oxidase (NOX) family is responsible for producing reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, using NADPH as an electron donor. In pancreatic ß-cells, NOX-derived ROS inhibits basal and glucose-stimulated insulin secretion. Thus, we hypothesized that the absence of BMAL1, a core circadian clock component, could trigger an increase of NOX2-derived ROS in pancreatic ß cells, inhibiting insulin secretion under basal and stimulated glucose conditions. To test such hypothesis, Bmal1 knockdown (KD) was performed in cultured clonal ß-cell line (INS-1E) and knocked out in isolated pancreatic islets, using a tissue-specific ß-cells Bmal1 knockout (KO) mice. The insulin secretion was assessed in the presence of NOX inhibitors. The Bmal1 KD within INS-1E cells elicited a rise of intracellular ROS content under both glucose stimuli (2.8 mM and 16.7 mM), associated with an increase in Nox2 expression. Additionally, alterations of glutathione levels, CuZnSOD and catalase activities, reduction of ATP/ADP ratio, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and aconitase activities, followed by glucokinase and Slc2a2 (Glut2) expression were also observed in INS-1E ß-cells, reflecting in a diminished insulin secretion pattern. The isolated islets from ß-cell Bmal1-/- mice have shown a similar cellular response, where an increased NOX2-derived ROS content and a reduced basal- and glucose-stimulated insulin secretion were observed. Therefore, together with NOX inhibition (Apocynin), polyethene-glycol linked to superoxide dismutase (PEG-SOD), phorbol myristate acetate (PMA), and diethyldithiocarbamate (DDC) data, our findings suggest a possible BMAL1-mediated NOX2-derived ROS generation in pancreatic ß cells, leading to the modulation of both basal- and glucose-stimulated insulin secretion.


Asunto(s)
Células Secretoras de Insulina , Factores de Transcripción ARNTL , Animales , Glucosa , Insulina , Secreción de Insulina , Ratones , NADPH Oxidasas , Especies Reactivas de Oxígeno
8.
Mol Metab ; 53: 101248, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33989778

RESUMEN

OBJECTIVE: ß-cell dedifferentiation has been revealed as a pathological mechanism underlying pancreatic dysfunction in diabetes. We previously showed that increased miR-7 levels trigger ß-cell dedifferentiation and diabetes. We used ß-cell-specific miR-7 overexpressing mice (Tg7) to test the hypothesis that loss of ß-cell identity triggered by miR-7 overexpression alters islet gene expression and islet microenvironment in diabetes. METHODS: We performed bulk and single-cell RNA sequencing (RNA-seq) in islets obtained from ß-cell-specific miR-7 overexpressing mice (Tg7). We carried out loss- and gain-of-function experiments in MIN6 and EndoC-bH1 cell lines. We analysed previously published mouse and human T2D data sets. RESULTS: Bulk RNA-seq revealed that ß-cell dedifferentiation is associated with the induction of genes associated with epithelial-to-mesenchymal transition (EMT) in prediabetic (2-week-old) and diabetic (12-week-old) Tg7 mice. Single-cell RNA-seq (scRNA-seq) indicated that this EMT signature is enriched specifically in ß-cells. These molecular changes are associated with a weakening of ß-cell: ß-cell contacts, increased extracellular matrix (ECM) deposition, and TGFß-dependent islet fibrosis. We found that the mesenchymal reprogramming of ß-cells is explained in part by the downregulation of Pdx1 and its inability to regulate a myriad of epithelial-specific genes expressed in ß-cells. Notable among genes transactivated by Pdx1 is Ovol2, which encodes a transcriptional repressor of the EMT transcription factor Zeb2. Following compromised ß-cell identity, the reduction in Pdx1 gene expression causes a decrease in Ovol2 protein, triggering mesenchymal reprogramming of ß-cells through the induction of Zeb2. We provided evidence that EMT signalling associated with the upregulation of Zeb2 expression is a molecular feature of islets in T2D subjects. CONCLUSIONS: Our study indicates that miR-7-mediated ß-cell dedifferentiation induces EMT signalling and a chronic response to tissue injury, which alters the islet microenvironment and predisposes to fibrosis. This research suggests that regulators of EMT signalling may represent novel therapeutic targets for treating ß-cell dysfunction and fibrosis in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN , Transactivadores/genética , Factores de Transcripción/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
9.
Redox Biol ; 22: 101138, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30802716

RESUMEN

Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , NADPH Oxidasa 1/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Biomarcadores , Proliferación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Fosforilación , Unión Proteica , Transporte de Proteínas , Ratas
10.
J Biotechnol ; 131(1): 92-6, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17624458

RESUMEN

Stevioside is a natural sweetener obtained from the leaves of Stevia rebaudiana. It is a glycoside of steviol and other glycosides of the same aglycone are also found in the plant. Stevioside is usually the major component in commercial products, but it is not the one with the best organoleptic properties. It has a bitter aftertaste and, for this reason, attempts have been made in order to modify its molecule. In this work, the commercial and purified stevioside were modified by hydrolytic enzymes from Gibberella fujikuroi. A screening was carried out on six strains of the fungus in order to select the most active. The production of the enzymes by the fungi was induced by its culture in a medium containing stevioside as the sole carbon source and the enzymatic extract was then used in the experiments. The products obtained were analyzed by HPLC-UV and HPLC-MS/MS. The results showed a significant increase in the concentration of rebaudioside A in the final product, which has better organoleptic properties than stevioside.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Gibberella/enzimología , Glucósidos/metabolismo , Catálisis , Sistema Libre de Células , Cromatografía Líquida de Alta Presión , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/aislamiento & purificación , Glucósidos/química , Glucósidos/aislamiento & purificación , Hidrólisis , Cinética , Espectrometría de Masas
11.
Phytochemistry ; 68(6): 834-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17258248

RESUMEN

Betulinic acid (1), a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. The closely related, betulonic acid (2) also has similar properties. In order to obtain derivatives potentially useful for detailed pharmacological studies, both compounds were submitted to incubations with selected microorganisms. In this work, both were individually metabolized by the fungi Arthrobotrys, Chaetophoma and Dematium, isolated from the bark of Platanus orientalis as well as with Colletotrichum, obtained from corn leaves; such fungal transformations are quite rare in the scientific literature. Biotransformations with Arthrobotrys converted betulonic acid (2) into 3-oxo-7beta-hydroxylup-20(29)-en-28-oic acid (3), 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4) and 3-oxo-7beta,30-dihydroxylup-20(29)-en-28-oic acid (5); Colletotrichum converted betulinic acid (1) into 3-oxo-15alpha-hydroxylup-20(29)-en-28-oic (6) acid whereas betulonic acid (2) was converted into the same product and 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4); Chaetophoma converted betulonic acid (2) into 3-oxo-25-hydroxylup-20(29)-en-28-oic acid (7) and both Chaetophoma and Dematium converted betulinic acid (1) into betulonic acid (2). Those fungi, therefore, are useful for mild, selective oxidations of lupane substrates at positions C-3, C-7, C-15, C-25 and C-30.


Asunto(s)
Hongos/metabolismo , Ácido Oleanólico/análogos & derivados , Triterpenos/metabolismo , Ascomicetos/metabolismo , Biotransformación , Colletotrichum/metabolismo , Estructura Molecular , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos , Triterpenos/química , Ácido Betulínico
12.
FEBS Open Bio ; 4: 141-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24490138

RESUMEN

Dehydroepiandrosterone (DHEA) and the dehydroepiandrosterone sulfate (DHEA-S) are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX) female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS) and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA